Texas Instruments Home Computer {@

Mini Memory

sorrmare: COMMAND MODULE

An expansion module that increases the memory
capacity and power of your computer with these

Addaﬂbymdnlndomlmmmoryfmmm
program and data storage, 4K bytes of Read Only
Memory (ROM), and 6K bytes of Graphics Read Only
Memory (GROM).

Contains additional TI BASIC subprograms and

" utility routines that allow you to load and link BASIC
programs to assembly language subprograms, to
access the machirne resources of your computer,
and to address the Memory Expansion unit (sold
separately) from a T| BASIC program.
Has a built-in battery to preserve data or programs
stored in the module, even when you remove the
module from the computer or turn the computer off.
Aliows you to troubleshoot your assembly language
programs by means of the EASY BUG debugging
program.
Comes with a cassette-based Line-by-Line Symbolic
Assembler that makes It possible for you to create
your own assembly language programs.

WARNING

To retain data In Mini Memory Module, turn console power off and
discharge hand by touching some electrically grounded object
before inserting or removing module.
STATIC DISCHARGE MAY CAUSE DATA LOSSI

1035987-2

b Ty TEXAS INSTRUMENTS
5 HOME COMPUTER

Mini Memory

This Solid State Software™ Comrmand Module is designed
to be used with the Tl Home Computer. |t increases the
memory capacity and power of your computer with these
features:

m Adds 4K bytes of Random Access Memory (RAM) for
program or data storage in the module itself.

W Has a built-in battery to preserve data or programs
stored in the modue, even when you remove the module
from the computar or turn the computer off.

@ Contains 4K bytes of Read Only Memory {(ROM) and 6K
bytes of Graphics Read Only Memory (GROM)
programmed with additional Tl BASIC subprograms that
allow you to link BASIC programs to assembly language
subprograms, access the machine resources of your
computer, and address the Memory Expansion unit (sold
separately) from a Tl BASIC program.

A Allows you to troubleshoot your assembly language
programs by means of the EASY BUG debugging
program.

Copyright © 1982 by Texas Instruments Incorporated
Command Module program and data base contents
copyright © 1981 by Texas Instruments Incorpeorated
See important warranty information at back of book.

i
k.

TEXAS INSTRUMENTS
HOME COMPUTER

This program was adapted and daveloped by the staff of the Texas
Instruments Personal Computer Division, with contributlons by:

Wenn Lin

Sranville Ott
Herman Schuurman
Paul Urbanus

This manual was developed by the staff of the Texas Irstruments
Learning Center, with contributions by:

ra McComic
Jacquelyn Qulram
Jan Stevens

Copyright © 1982 by Texas Instroments Incorporated

Mini Memory
TABLE OF CONTENTS
INTRODUCTION i i ii e inenaas 5
Applications e 6
General Memory Information, 7
Sources of Backgrournd Information 8
HONTOUSETHISMANUAL. ccciiinnnan, 9
USINGTHEMODULEcc i i i iainnns 16
LoadandBRun. o i i 1
3 12
Renitialize o it 12
LOADING ANDSAVING T| BASIC DATAFILES 13
Addltional Files Introduced tothe System 13
FI@ACCESS. ...t tie i e e i iaaieanenn 14
Data Flle Specifications 14
Setting Up a Mini Memory Filz for Data Storage ... 15
Setting Up a Memory Expansion File for
DatasStorage - ...ttt e 16
Reading and Writinga DataFile................ 17
LOADING ANDSAVING Tl BASIC PROGRAMS 18
Loading and StoringaProgramo, .. 19
Mixing Assembly Language Programs and
TI BASICFilescoiii i i e iananns 19
ADDITIONAL TI BASIC SUBPROGRAMS 20
INITSubprogram it iaiia e 21
LOAD Subprogram v ciireinnrneenn, 22
{oading Object Fites e eee e 22
Loading DataFiles.coiiviirineens 23
LINKSubprogramc i iiiirinrinnncnens 24
ParameterPassing.ccoiiveinnnn., 25
Operalion it it itir et 26
NamelLink Routine..................., 28
PEEK Subprogram.c.oviie iivicnenneinancnnn. 0
PEEKY Subproegram e 30
POKEVSubprogramc¢coieriiianacinan 31
CHARPAT Subprogramccocvvnnns PR K1l
LOADING ASSEMBLY LANGUAGE PEOGRAMS k1|

TEXAS INSTRUMENTS
HOME COMPUTER

Mini Memory

SYSTEMUTILITYROUTINES. covevn-..
Standard Utllities.......... e e eaaaa
VDP Single Byte Write — VSBW

VDP Multiple Byte Write — VMBW
VDPSingleByte Read —¥SBR

VDP Multiple Byte Read — VMBR

VDP Write to Fegister —YWTR
KevyboardScan —KSCAN.................
Extended Utilitiescciiuivut
Linking to GROM-Resident Routines — GPLLNK. .

Linking to ROM-Resident Routines — XMLLNK ...

Linking to Device Service Routines — DSRLNK ...

Ti BASIC Interface Utilities
Numeric Assighment — NUMASG

Strng Assignment — STRASG.............

Get Numeric Parameter — NUMREF

Get String Parameter — STRREF
ErrorReporting—ERR
SampleProgramo iiiieiaan.
EASYBUGDEBUGGEFRiivinnnn
Operation _ i i
Commands and Special FunctionKeys
Modify CPUMemory — M

Modify VDP Memory — V..

Display GROMMemory — G
Execute Assembly Program—E
CRUSIingle-Biil/IO—C

Save CPUMemorytoC81—S

Load Storagefrom G881 —L
APPENDIX A:CPUMemoryMap
APPENDIX B: Mini Memory ROM QOrganization

APPENDIX C: RAM Organization — T| BASIC Files
APPENDIX D: Minl Memory RAM Organization —

Assembly LanguageStorage. 000
APPENDIX E:VDPRAMMemoryMap.

APPENDIX F: VDP RAM with TI BASIC Interpreter

INDEX. ... e

INTRODUCTION

The Mini Memory Solid State Software™ Command Module increases
the versatility of your Texas Instrurrents T1-39/4 or TI-99/4A Home
Computer by providing additional memory for your system and
important toois for program development. In addition, the module
contains a built-in battery, which permits the programs and data
stered In the modute’s Random Access Memory (RAM) to be retained
whan the computer console is turned off, even if the module is
removed from the console,

Tha features of the Mini Memory module Include:

m A total of 14K bytes of memory. This memeoty consisis of 6K bytes
of Graphics Read Only Memory (GROM), 4K bytes of Read Only
Memory {(ROM), and 4K bytes of RAM. The programs resident In the
GROM and ROM provide additioral important program development
tools. The RAM provides additional memory space for data and
program storage.

m A built-in battery in the module te preserve the data or programs
stored in the RAM memory.

m Additional files. Besides the 4K-tyte RAM fie in the Mini Memory
module itself, the 24K .byte segmant of the Memory Expansion unit,
if attached, can be usad by Tl BASIC programs.

m Assembly language capabilities. With the Mini Memory module,
assembly language object progrems ¢an be loaded into the module
Itself or into the Memory Expansion unit, If attached.

m Additional TI BASIC subprograms. With the Mini Memory module,
several additional subprograms can be called with TI BASIC
statements. These subprograms includa the ability to PEEK and
POKE values.

m Additional utility routines. The M-ni Memory module includes
several program routines which permit access to the computer's
resources; for example, interfacing user programs with ROM- and
GROM-resident programs, interfacing assembly language programs
with the T} BASIC Interpreter, and accessing the Video Display
Processor (VDP) RAM.

m A resident debug program. The EASY BUG debug program is a
useful program-development tool with whict you can access the
Internal resources of the computer system and troubleshoot your
programs.

e

TEXAS INSTRUMENTS
HOME COMPUTER

Mini Memory

APFLICATIONS

You can use the RAM in the Mini Memory module to store sither data
or programs. This memory is “CPU rmamory,” which means it is fast-
access memory. You can ake advaniage of this fast storage and
retricval to store data which is used ‘requently in an application or to
storz assembly language programs which perform rapid computations.

A TI BASIC program which you frequantly use can be stored in the
Mini Memory rodule, rather than on a cassette tape or dis<ette, for
quicker loading.

Gensrally, Random Access Memory {for example, the “user’ memory
in tte computer console) loses its contents when the console is
turnad off. The battery-activated Mini Memory modulse, however,
retains Its contents when you turn the console off. Programs or data
can be stored i1 the battery-powered RAM, the console turned off, anc
the module removed from the console. Then, when you reinsert the
module and turn the console on, your data or program is ready to use.

CAUTION

When you remove or insert the Mini
Memory module, the computer console
should be OFF to preveat the possibility of
any data or programs slored in RAM being
lost or altered.

An important feature of the Mini Memory module is its capability of
implasmenting assembly language programs. The module allows you to
foad your own assembly language programs for direct access to the
programmable components in the computer {such as the TMS9900
micraprocessor or the TM$9918 Video Display Processor). Assembly
language programs can also directly access devices such as the
Wired Remote Controllers or cassette tape recorders throuch their
interface ports on the console.

In acdition, the module makes it possible for assembly language
subroutines to be called from T| BASIC programs. These assembly
language subroutines can perform functions which would bz
inefficient or impossible to implement in BASIC. Program routines
resident in the module’s GAOM and FOM provide a conveniant
interface between TI BASIC programs and assembly languaje
programs,

e e |
B

Also included in the module is the EASY BUG debugging program,.
With EASY BUG, you can access the memory and programmable
components in the computer. EASY BUG also includes commands for
joading and storing memory-image data on cassette tape.

GENERAL MEMORY INFORMATION

Note: in this manual, the greater than symbol (>) indicates that the
fcllowing number is a hexadecimal (base 16} number.

The Mini Memory module contains a total of 14K bytes of memory,
consisting of 4K bytes of battery-powered Random Access Memory
{FAM), 4K bytes of Read Only Merrory (ROM), and 6K bytes of
Graphics Read Only Memory (GROM). Resident in ROM and GROM are
a number of routines which add additional callable subprograms to Tl
BASIC and which are useful for interfacing assembly language
piograms with TI BASIC programs.

Aopendix A shows the memory organization for the computer’s entire
memory space. The 4K bytes of ROM in the Mini Memory module
occupy memory addresses > 6000 through >6FFF (or from 24576
trrough 28671). Appendix B illustrates the details of the ROM
organizatlon.

The 4K bytes of RAM in the modulz occupy memory addresses > 7000
trrough > 7FFF {or from 28672 through 32767,. Appendix C shows the
dotalls of the RAM organization when it is used for Tl BASIC files.
Appendix D describes how the RAM is organized when it is used for
assembly language storage. The GROM occupies memoty space which
is not directly mapped into the GPU memory address space.
Appendices E and F contain information about the RAM in the Video
Display Processer (VDP).

TEXAS INSTRUMENTS
HOME COMPUTER

SOURCES OF EACKGROUND INFORMATION

A number of references can give you nelpful background information
as you begin to use the Mini Memory module. These are;

a The Texas Instruments Home Computer User’'s Reference Guide;

m The Texas Instruments Home Computer 7/ Exiended BASIC owner's
manual;

m And, if you are creating assembly language programs, the Texas
Instruments Home Computer Editor/Assemblier owner's manual.
Trls book (part nurnber 1035984-1) is a complete reference guide to
the TMS9900 assembly language and also contains details about
tha internal architecture of the T1-99/4 and T1-99/4A Home
Computers. For informatlon on ordering the Editor/Assembler
manual, call toll-free 800-858-4585 (within the contiguous Unlted
States) or 800-692-4279 (~Ithin Texas), or write to:

Consumer Relations Department
Texas Instruments Incorporated
P. 0. Box 53

Lubbock, Texas 79408

Mini Memory

& HOW TO USE THIS MANUAL

% This manual assumes that you are already experienced in
programming with Tl BASIC. Statemen:s, commards, and functions
hat are the same as in T BASIC are only discussed briefly. For a
complete description, see the User’s Reference Guide inciuded with

your T-99%/4 or TI-99/4A Home Computer.

if you intend to use the Mini Memeory module for creating your own
assembly language programs, it is assimed that you are experienced
. In TMS9900 assembly language programming and that you are familiar
with the internal organization of data and flle structures used by the
- Home Computer. For a complete discussion of these topics, see the

W EditoriAssembier ownet’s manual.

The remainder of this manual explains the various features included in
he Mini Memory module. The section entitled “Using the Module™
axpiains the various options that are presented on the selection
- gcreen when the Mini Memory module is first brought into operation
- and explains how to select these options.

The section on “Loading and Saving T| BASIC Data Files” explains
how to use the Mini Memory module for accessing data files, and the
‘Loacing and Saving T| BASIC Programs” section describes how to

1 i use the module for loading and storing program files.

The saction on “Additional TI BASIC Sibprograms’ explains the

additional subprograms the Mini Memory module provides to interface
" with assembly language programs and the computer system,

4 "Loacing Assembly Language Programs” discusses the procedures

for Joading assembly language programs and suborograms, and the

“System Utility Routines” section describes the MIni Memory module

utilities which access CPU ROM and CROM routines.

The “SASY BUG Debugger” section detalls the operation of the EASY
BUG debugging program, and the six appendices contain information
- about the memory organization of the Home Gomputer.

TEXAS INSTRUMENTS
HOME COMPUTER

-YUSING THE MODULE

Before inserting or removing the Mini Memory module, it's & good
practice to tum off the computer console, Turning the console off
prevents the rossibllity of “contact bounce” between the module and
console contacts, which could causs you to lose or alter the contents
of the module's Random Access Memory.

Nole: Ba sure the module is free of static electriclty bafore inserting it
into the computer. (See “Service and Warranty Information” for details
about static eiactricity.}

SEREGARNINANEREA

TEXAS INSTRIMENTS
HOME COMPUTER
FEADY-PRESE ANY KEY TO BEGIN

LTI

& 15979 TEXAS INSTRUMENTS J

1. Slide the module into the slot on the console. Then turn the
computer ON, and wait for the master title screen to appear.

2. Press any key to make the mastei selection list appear. Two
options for the Minl Memory module appear on this list: EASY BUG
and MINI MEMORY. If you select EASY BUG, the EASY BUG
debugging program is srought into operation and its seiection
gcreen appears. (For detailed information on EASY BUG, see the
gection “EASY BUG Debugger.”) If you selact MINI MEMORY, you
can choose to load files, run programs, or Initialize the Minl
Memory module's Random Access Memory. Press the key
corresponding to the number beside the desired option.

Note: To remove the module, first return the computer to the master
title screen by pressing QUIT. Then turn the computer consoie OFF,
and remove the module from the slol.

If you select MIN] MEMORY from the master selection list, the
following selections are availabie.

10

Mini Memory

* MIN. MEMORY *

PRESS;

1 TO LOAD AND RUN
2 RUN

3 RE=-INITIALIZE

© 1981 TEXAS INSTRUMENTS

\ _

Three options are presented. To selact an option, press the

‘appropriate key for that option.

LOAD AND RUN loads assembled programs in tagged or compressed
object format (stored on diskette) into memory and runs the programs.
RUN executes programs previously loaded into memory, and
RE-INITIALIZE re-initiallzes the Mint Memory module and prepares it
for loading new programs. These three options are discussed in the
following paragraphs. ' .

LOAD AND RUN

Tre LOAD AND RUN option allows you to load and execute assembiy
language programs developed with the Editor/Assembler package and
stored on a diskette. When you press 1 to select the LOAD AND RUN
optlon, the prompt “FILE NAME? appears, This file must contain an
assembly language program in object format. Type the filename and
then press ENTER; for example, typing

DSK1,DEMO
and pressing ENTER loads a flle named DEMO from a diskette in Disk
Drlve 1.

After the file is loaded, the filename is erased from the screen, The
computer |s now ready to accept ancther filename, You may load as
many files as you like untll the memory is full. When you have loaded
all your files, press ENTER {without 2ntering a filename) to proceed.

The prompt "PROGRAM NAME?" appears nexl. The program nams is
any entry point in a program which is marked by a label DEFined in
the DEF list of the program. Pressirg ENTER without entering a
program name creates an error condition.

11

TEXAS INSTRUMENTS
HOME COMPUTER

RUN

If you have previously loaded an assembly language object progrem,
choose the RUN opticn to run tha program. Remember, a program
loaded into the Mini Memory moduie is retained even i* the console is
turned off. Therefore, you can run this program withoul reloading it.

If you press 2 when the Minl Memory selection list s on tha scraeen,
the prompt “PROGRAM NAME?" is displayed. Enter the nams of the
program. The program name must be an eniry peint In a program
which appears in the internal REF/DEF table. (For more information on
the REF/DEF table, see “LOAD Subprogram.) If you press ENTER
without entering a program name, the computer locates and runs the
program most recently executed.

RE-INITIALIZE

If you press 3 to select the REINITIALIZE option, the Mini Mamory
module’s Random Access Memory is initlalized 10 accept new files.
Any programs or data stored in the Random Access Memory are lost.

When you choose this option, the screen goes blank momentarily, and
then the selection screen reappears.

If the message MEMORY ALREADY INITIALIZED, HIT “PROG'D" TD
CONFIRM is displayed, press PROC'D if you want to re-initialize
memory. Re-initializing clears all existing program references from the
memory anl prepares for loading new programs. Note: Press PROC'D
ONLY if you want to load a new program and the remalning memary
space {5 too small to add the new program,

if you do not want to te-initialize, press any other key to return to the
selection list without re-initializing memory.

12

Mini Memory

LOADING AND SAVING Tl BASIC DATA FILES

Probably the most common application for the Mini Memary module is
fast, temporary data storage for use by Tl BASIC programs. Since it
retaing its data gven If power to the console is turned off, the Mini
Memnory module is useful for preserving small zmounts of data.

You can estabitsh a file of up to 4K bytes in the Mini Memory module
alone. If the Memory Expansion unit is connected to the computer
console, the Mini Memory module also allows you to access an
additional file, EXPMEMZ2, located in the Memory Expansion unit. This
file can have a length of up to 24K bytes.

ADDITIONAL FILES INTRODUCED TD THE SYSTEM

The Minl Memory module intraduces two new flles to the system.

1. MINIMEM—The 4K read/write memory segment located in the Mini
Memory module itself.

2. EXPMEM2—A 24K memory segment located In the Memory
Expansion unlt.

The last file is avaitable only If the Memory Expansion unit is
connected to the system and turned on. Refer to the Mamory
Expansion unil owner's manual for more information on how to
connect this unlt to the system and the proper Initlalization procedure.

13

TEXASINSTRUMENTS
HOME COMPUTER

Mini Memory

FILE ACCESS

The memoty in the Mini Memory module and the Memory Expansion
unit can be used for data file storage by Tl BASIC at any time.
Howaver, if you want to use these files for data storage together with
storing assambly language programs, you must take certain
precautions to avoid destroying data andfor assembly language
programs. See “MixIng Assembly Language Programs and T| BASIC
Files” for more information on this procedure.

WARNING

If data files are stoted In the the Mini
Memory module (the file called MINIMEM),
the assemnbly language capabliities ¢cannot
be used.

Data File Speclfications

The following specifications define data files to be stored in the Mini
Memory mcdule.

m File Organlzations —SEQUENTIAL and RELATIVE.

m Flie types—DISPLAY and INTERNAL.

B Record length—VARIABLE anc FIXED.

® Operation modes—NPUT,-OUTPUT, UPDATE, and APPEND.
m BASIC functions —EOF.

The folowing restrictions apply to the above specifications.
m The VARIABI.E-length record type can be used only with
SEQUENTIAL files.

m For a file with VARIABLE-length records, a zero-length data item in
the first record will be stored incorrectly. To ensure proper file
oparation, make sure that the first record in your file is not a null
string.

For more Information on data file handling and accessing files, refer
to the “Flle Processing™ section of the User’s Reference Guide.

14

Setting Up a Mini Memory File for Data Storags

You can think of the files introduced to the system by the Mini
Memory module as high-speed, out-of-program storage files, just as &
cassette or diskette is an out-of-program storage file. The Tl BASIC
statements used to set up and access files in the Mini Memory
module are the .same as those described in the User’s Reference
Guide.

To access a file, you must open it with an OPEN statement, listing the
fila specifications you want the file to have,

OPEN #3:"“MINIMEM",RELATIVE,FIXED,UPDATE,DISFLAY
Da:a can be written to the file with a PRINT statement and read from

. the file with an INPUT statement. The RESTOR: statement repositions

the file at its beginning record.

PRINT #3: 4,B,C,D
RESTORE #3
INPUT #3: A,B,C,D

You should close the file when you no longer need to access it or if
you want to re-OPEN it to establish different specifications {like
¢hanging it from an OUTPUT file to an INPUT file).

CLOSE #3

15

TEXAS INSTRUMENTS
HOME CCMPUTER

Setting Up a Memory Expansion Flle for Data Storage

Setting up data files in the 24K-byte memory segment of the Memory
Expansion unit requires the same procedure as that described for the
Minl Memory module, with one exceatlon.

To ensure that a file is properly opened and closed, each OQPEN
statement rmust be preceded by a CALL LOAD statement specifying an
adcress and a value. (See “Additional Tl BASIC Subprograms” for full
information about the LOAD subprogram.) The address |s the same for
each CALL LOAD statement; the value that follows the address
depends on ths file type and record ength,

For INTERNAL-type files with VARIABLE-length records, the format is

CALL LOAD(-24574,24)
CPEN #1:“EXPMEM2",SEQUENTIAL
,VARIABLE 32, INTERNAL,OUTPUT

For DISPLAY-type flles with VARIABLE-length records, the format is

CALL LOAD(-24574,16)
(PEN #1:"EXPMEM2”,SEQUENTIAL
,VARTABLE 32,DISPLAY,OQUTPUT

For INTERNALtype files with FIXEDdength records, the format is

CALL LOAD(-24574,8)
OPEN #1:"EXPMEM2",RELATIVE,F
IXED, UPDATE, INTERNAL

For DISPLAY-type files'with FIXED-length records, the formrat Is

CALL LOAD(-24574,0)
OPEN #1:“EXPMEM2"” ,RELATIVE,F
IXED,UPDATE,DISPLAY

16

Mini Memory

Reading and Writing a Data Flle

The following programs IHustrate wiiting data 1o the MINIMEM and
E}(PMEMz files and then reading the data.

MINIMEM Example:

100 OPEN #5:"MINIMEN", SEQUEN
TTAL,FIXED,OUTPUT, INTERNAL
110 INPUT X

120 INPUT Y

130 INPUT Z

LAC PRINT #5:X, Y, 2

150 CLOSE #5

This segment opens the MINIMEM file (the 4K tytes of
RAM In the Mini Memory module) as an output file in
statement number 100. Lines 110 through 130 accept the
data values entered from the keyboard. Line 140 writes
these values to the MINIMEM file, and line 150 closes
the MINIMEM flle.

At this point, the computer conscle ¢an be turned off
and the Minl Memory module removed from the console.
The data Is preserved ,ust as if it had been stored on a
cassette or disketts.

The following segmeni reads the data values stored in
the MINIMEM file and displays the values on the screen,

200 CPEN #5:“MINIMEM',SEQUEN
TIAL,FIXED, INPUT, INTERNAL
210 INPUT #5: P, Q, R

220 PRINT P, Q, B

230 CLOSE #5

17

TEXAS INSTRUMENTS
HOME COMPUTER

EXPMEM2 Example:

LoD CALL CLEAR

110 REM QFEN FILE FOR DISPLA
I-TYPE, VARTABLE-LENCTH

120 CALL LOAD(-24574,16)

130 OPEN #1:“EXPMEMZ",SEQUEN
TIAL,VARIABLE,DISPLAY,/PDATE
140 FOR I=1 TO 20

150 PRINT #1:“RECORL #7;1;“W
AS READ.™

160 NEXT I

170 RESTORE #1

80 FOR J=1 TQ 20

290 INPUT #1:48

200 PRINT a3

210 NEXT J

220 CLOSE #1

This program opens a file in EXPMEM2 (the 24K-byte
memory segment in the Memory Expanslon unit), writes
20 records o the file, and then reads the records back
and displays them on ihe screen. Note the CALL LOAD
statement in line 120, which precedes the OPEN
staternent in line 130, and the RESTORE statement in
line 170, which repositions file #1 at Its beginning record.

fiote: When the computer console is turned off, any data
stored in the Memory Expanslon unit is destroyed.

LOADING AND SAVING Tl BASIC PROGRAMS

In addition to data file storage, the Mini Memory module is also useful
for storing short TI BASIC programs or assembly language programs.
Assembly language programs stored on diskette are loaded through
the LOAD AND RUN option on the Nini Memory selection list, while
Tl BASIC prog-ams can be saved and loaded using the SAVE and OLD
commands, respectively. For more information on these commands,
refer to the “Commands"” section of the User’s Reference Guide.

The Mini Memory module can store nearly 4K bytes (exactly 4088
bytes) of program data in its RAM.

18

-2

Mini Memory

To use files for assembly language programs and Tl BASIC files
together, you must take certain precautions, which are described in

- the section “Mixing Assembly Language Programs and Tl BASIC

Files.”

'LOADING AND STORING A PROGRAM

The following procedure shows you how to crezte a one-statement
test program, save it in the Mini Memory module, and then load it
back into the conscle’s memory.
First, select Tl BASIC and anter the program.

100 PRINT *THIS IS A TEST”

Store the program by entering the command
SAVE MINIMEM

" After the program is stored in the module, the computer console can

be turned off. Then, even if the Mini Memory module is removed from
the console, the program is preserved just as if it had been stored on
a cassette or disketts.

As a test, if you do not want to turn the console off at this point, enter
the command
NEW

to remove the program from the console memory. To load the program
back into the console memory, enter the command

01D MINIMEM

Now, enter the LIST command to see that the program was loaded
back into memory. :

MiXING ASSEMBLY LANGUAGE PROGRAMS AND TI BASIC FILES

Assembly language programs and T| BASIC files cannot be stored
simultaneously in the Mini Memory module. H the Mini Memory
module and the Memory Expansion unit are both available, however,
you can mix assembly language programs and Tl BASIC files, with the

following restrictions.

& The Mini Memory module must be used for assembly language
storage only.

m You can also store assembly language programs in the BK-byte
segment of the Memory Expanslon unit.

19

TEXAS INSTRUMENTS
HOME COMPUTER

8 The 24K-byle segment of the Memory Expansion unit must be used
for your T1 BASIC flles.

WARNING

t data files are stored in the Mini Memory
module (the file called MINIMEM), the
Memory Expansion unit cannot be used for
assembly program storage.

When you have both the Minl Memory module and the Memory
Expansion unit and you want to mix assembly language programs and
Tl BASIC files, use the fcllowing steps to avoid destroying data andfor
programs.

1. Initlalize the Mini Memery module by following one of two
procedures. One procedure is to select the RE-INITIALIZE option
from the Mini Memory selection screen. A second procedure is to
select Tl BASIC from the master selection {ist and use the CALL
INIT command. (See “Additional 71 BASIC Subprograms” for a
description of the INIT subprogram.)

2. From Tl BASIC, use tha OPEN statement to reserve the EXPMEM2
{ile for data storage.

3. LOAD the assembiy language programs you want to use. (See
“Loading Assembly Language Programs” for additional
information.)

ADDITIONAL Ti BASIC SUBPROGRAMS

Several subprograms included In the Mini Memory module provide an
interface betwsen assembly language programs and T! BASIC. These
subprograms are INIT, LOAD, LINK, PEEK, PEEKY, POKEV, and
CHARPAT. Each subprogram is discussed in this section. In these
discussions, the term “CPU memory” refers to all the memory directly
accassible by the Central Processing Unit (CPU). This Includes the
memory in the module itself, the Memory Expansion unit, if attached,
and the scratchpad memory in the console.

20

Mini Memory

“INIT SUBPROGRAM

ormat: CALL INIT

~The calling statement of the INIT subprogram has no arguments. We

recommend that you generally use CALL INIT In the command or
immediate mode to avoid inadvertently losing programs or data stored
in memory. However, if the CALL INIT statement is used in a program,
it must appeer prior to the LOAD and LINK subprograms.

The INIT subprogram initializes the CPU memory for assembly
language subroutines and re-initializes tha internal tabies in the Mini
Memory module. When this subprogram is run, it checks to see If the
Memory Expansion unit is connected. If so, it sets the corresponding
table values in the Mini Memory mcdule 1o enable access to both the
moduie and the Mamory Expansion unit.

WARNING

CALL !NIT erases all programs and data
from the Mini Memory module. Use it only
to clear the memory for loading new
programs or subroutires. Also, if the
Memory Expansion urit is not properly
connected or if It Is not turned on when
CALL INIT is executed, the INIT
subprogram does not recognize the
Memory Expanslon unit. If this happens,
this memory cannot bz used for loading
programs.

Since the Minl Memory Command Module confains its own internal
power supply, the module does not have to be initlailzed svery time
the main console is turned on. Only if you want to re-Inltialize the
module’s memory does the INIT sutprogram have to be used.

CAUTION

The Mini Memory module retains only the
data contained in the module itsslf. Any
data in the Memory Expanslon unit is lost
if the system is turned off.

21

TEXAS INSTRUMENTS
HOME COMPUTER

10AD SUBPROGRAM

The LOAD subprogram serves two purposes.

m It loads assembly langjuage object flles intc CPU memory.
m It foads data into CPU memory.

The syntax far the CALL LOAD statement has two forms, depanding
on the purpose of the CALL LOAD statement.

Loading Object Files
Format: CALL LOAD{objfilenames],obj-tilename,...])

This format of the CALL LOAD statement loads an assermrbly language
object file or sokes direct data into memory for later execution by the
GALL LINK statement.

Thz obj-fitename {object filename) can be any valid string expresslon
and specifies the file to be opened and read by the LOAD subprogram.
Relocatable object code is loaded at the first available address, which
depends upor the syster configuration; and space is reserved for the
assemnbly language programs according to the length specified in the
"0O-tag” field in the object file. (For a description of object program tag
fieds, see the Editor/Assembler owner's manual) Absolute object
code is loaded at the absolute address specified in the object code.

Fo’ example, the statement .
CALL LOAD{*DSK1.DEM("}

loads the file DEMO from the diskette in Disk Drive 1.

CAUTION

Absolute code is loaded at the address
specified in the object code. No space is
reserved unless the length is specified in
the “0-tag” field. Loading data into memory
used by the Tl BASIC interpreter can cause
the system to crash.

22

Mini Memory

L If you are using the Mini Memory module only, without the Memory
.Expansion unijt attached to the conscle and turned on, the first

.- a8sermnbly language program is loaded starting at > 7118, the lowest
vailable address In the module’s Random Access Memory (RAM). If
he Memory Expanslon unit is connected and tumed on, the first
Issembly language program is loaded starting at > A000, the starting
: address of the highest memory segmant In the Memory Expansion

hit. Subsequent programs are loaded sequentizlly, beginning with the
~lowest address in the high memory area.

: See “Loading Assembly Language Programs” for additional
“Information.

::\ Loading Data Flles
. Format: CALL LOAD(address,valuej,..,"" address,value,...])

‘When the LOAD subprogram is used o load data into CPU memory, a
list of integers {called a poke list) shculd be specified. The poke list
should start with an address between O (> 0000) and 32787 (> 7FFF) or

-an aldress between —1 (>FFFF) anc — 32768 (> 8000), followed by a
_list of integers to be used as one-byte data values. These integer

-values are loaded into consecutive locations, starting at the given

.address. An empty string (*”) separates the last byte of one poke list

e and the starting address of the next. The address for a poke list is

E absclute, and the data is not-relocatable.

For example, the statement
' CALL LOAD (-32000,25%,21,"”,8197,85)

-loads the value >FF15 at memory word address >8300 (byle
-addresses >8300 and >8301) and the value >55at memory byte
' address >2005.

23

TEXAS INSTRUMENTS
HOME COMPUTER

If an object code program is loaded directly with a poke list, a name
entry must also be loaded so that the program can be accessed by a
CALL LINK s:atement (described below). The program name and '
address are added to the REF/DEF table in the module’s memory In
the following manner,

First, the Flrst Free Address in the module (FFAM) and the Last Free
Acdress In the module {LFAM} must be read from memory by means of
the PEEK command {described below). The addresses of these two
variables are >701C and >701E respectively. After checking that
there is enough room (8 bytes) to add another label to the REF/DEF
table, subtract 8 from th2 old LFAM, and poke the new LFAM value 1o
>791E using the CALL LOAD statement. Load the program name
{must be exactly 6 bytes, including spaces) and the program address
(2 bytes) into the 8-byte space added to the REF/DEF tabla.

For example, If the LFAM is >8000, change it to >7FF8 and load the
name and then the address of the program.

LINK SUBPROGRAM
Format: CALL LINK{program-name [parameteriist"",..])

Ths LINK subprogram pesses control and, optionally, a list of
parameters from a Tl BASIC program to an assembly language
program.

The program-name s a string expression conslsting of from one
through six characters and must be an entry in the REF/DEF table.
This name must be definad in a program which has been loaded
previously. Or it a progrem was loaded byte-by-byte by means of a
poke list in a CALL LOAD statemsn:, the program name must have
been entered in the REF/DEF table explicitly. See the “LOAD
Subprogram” sectlon for more infermation.

The parameterlist is optional. This kst is used when parameters need
to be passed between the assembly language program and Tl BASIC.
You can pass string or numeric variables or expressions,

24

Mini Memory

oo - —

: Parameter Passing

pepsnding upon whethar a parameter is a variable or an expression,
ha parameter is passed by name or by value, Variables are passed by
ame, and expressions are passed by value,

f a varlable is passed to an assembly language program, it can have
ts value changed in the assembly language program, thus changing
he value of the variable in the main program also. |f the variable in a
parameter list has not appeared in pravious Ti BASIC statements, the
nterpreter creates a Symbol Table entry for tha variable.

xpressions are passed by value, since they are not directly
- asscociated with a variable. The value of an expression cannot be

; passed back to the calling program.

j: When an array slement, such as A(9), is given in the parameter list, it

j;;;' Is passed as a varlable. An entire array can be passed by following the

ﬁ_parameter name with parentheses. If the array has more than one

¥ -dimenslon, a comma must be placed inside the parentheses for each
additional dimension. For exampie, A/) indicates a one-dimenslonal

‘numsric array called A. EXT3$(,,) represents a three-dimensional string

p: array called EXTS.

E- To specify that certain varlables are t5 be used only for passing a

E- valus, but not for returning results, ths variable can be enclosed In

¥ parentheses. For example, (SUMI) refers to the current value of the

¥ numeric variable SUML. (A$(5)) refers to the vaiue of the string array

k- element A${5). Notice that complete arrays cannot be passed by value
g but must be passed by name; thus, (A()) would be illegal.

.:-A maximum of 15 arguments can bs I sted in the parameter list.

25

TEXAS INSTRUMENTS
HOME COMPUTER

Operation

The LINK subprogram performs the folowing actions.

= It svaluates the assembly language program name and Iis length (1
to 6 characters) and pushes this information onto the value stack.

m It builds the argument list, consisting of identifiers for eazh
argument in the parameter list, and builds a stack entry for each
argument.

m It moves the program name to the area where the utility routine can
access it and transfers control to the utility program.

m Upon return, it branches to an errer routine if an error has been
detected. Otherwise, it clears the stack entry used during LINK
execution and returns to the Tl BASIC calling program,

The LINK subprogram passes informatlon about the arguments via the
argument-identifier list in CPU RAM and the value stack in VDP RAM.

The argument identifiers, old value stack peinter, and the number of
arguments in the fist are located in the following CPU RAM locations.

Address Contenis
>7002->7011 Argument identitier, one byte for each argument.
>8310 Old value stack pointer of Tl BASIC interpretar.
>8312 Number of arguments in the parameter list.

The argument-identifier codes are ‘as follows.
Numeric expression
String expression
Numeric variable

String variable

Numeric array

String array

b by =2 O

More information on each argument Is stored in an eight-byt2 value
stack in VDP memory. The structure of an individual value stack
depends upon the type of argument, as described below.

Mini Memory

Numeric Expression—The stack contains the valus of the numeric
expression. The value is expressed in radix 100 notation. The first byte
Is the exponent of 100. If the exponent is positive, it is in excess of 64,
A negative exponent is expressed as a value less than 84 in the first
byte. The absolute value of the exponent is the difference betwesan
this value and 64. The other seven Lytes contain 0 to 99, for radix 100
digits. If the number is negative, the first word (two bytes) is the two's
complement of the number. For example,

»3F, »22, >00, >00, >00, >00, >00, >00 squals 0.34
>BE, >FB, >00, >00, >00, >00, >00, =00 equals —500

String Expression—A string stack entry consists of the following
information.

Bytes 0-1 >001C.

Byte 2 > 65 {The string tag used by the Tl BASIC
interpreter). i

Bytes 4-5 The pointer to the value of the string in VDP
memory. :

Bytes 8-7 The length of the string. Byte 6 should always
be zero since the maximum string length is
255 characlers.

Numeric Variable—This item is either a numeric variable or a humeric
array element. The stack contains the following information.

Bytes 0-1 The pointer to the variable’s Symbol Table
entry in VDP memory.

Byte 2 Zero.,

Bytes 4-65 The pointer to the elght-byte value of the
variable in YDP memory.

8tring Variable—This item is either a string varable or a string array
elenent. The stack entry contains the following information,

Bytes 0-1 The pointer to the variable's Symbol Table
antry in VDP RAM.

Byte 2 >»85 (The siring tag used by the Tl BASIC
interpreter),

Bytes 4-5 The pointer to the strirg's value in VDP
memory,

Bytes B-7 The string length.

27

TEXAS INSTRUMENTS
HOME COMPUTER

Mini Memory

Numeric Array—This entry results from an argument of the form A(),
A{), etc. It is used to permit a subprogram to manipulate an entire
array. The string entry contains the following information.

Bytes 01 The pointer to the array's Symbol Table entry
in VDP RAM.

Byte 2 Zaro,

Bytes 45 The pointer to the array’'s valuz space in VDP
RAM. The value space for a numeric array has
two bytes for each dimension which indicate
the maximum index for that dimension, The
values of the rest of the slements are stored
in sequential order.

String Array—This entry [s similzr to the entry for a numeric array,
except that byte 2 contalns > 65. The value space for a string array
contains two bytes for @ach dimension, indicating the maximum index,
followed by a pointer to each array element's value {string value) in
VDP RAM. Note that, with a numaric array, each array element is
stored consacutively in the same memory area, whlle the elements of
a string array are located in non-contiguous memory arsas.

Name Link Routine

When an asssembly language sudroutine is called from TI BASIC 2y a
CALL LINK statement, control passes to the subrouting through a
Name Link routine which resides in the utility program. The Name Link
routine fincs the name of the routine in the REF/DEF tzble located at
the high end of the Mini Memory module’s memory. When an
assembly language program is loaded, the Loader adds an eight-byte
antry to the REF/DEF table when it sees a REFed or DEFed label. This
REF/DEF tzble starts at >7FFF and goes down toward > 7118, the
First Free Address (FFAM) in the module.

The REF/DEF table is searched from the lowest address up. Therefore,
if two routines are loaded with tha same name, the second one loaded
is used. If the name you supply is greater than slx characters or if the
Name Link routine carnot find the name in the table, an error results.

28

Tha Name Link routine transfers control to the assembly language
program with a 9800 branch-and-link instruction (BL). When the
assembly language program is calied from the link routine, the
workspace is located at >70B8, and the return address is in R11 of
thet workspace. Before returning, your program should clear the byte
at > 837C; otherwlse, an error message may be displayed, even though
the program did not generate an error.

The assembly language program can assign new values to numeric or
string variables or to elements of numeric or string arrays with utilities
previded by the system. These utilities are deseribed in the “System
Utility Routlnes” section. '

Eniries on the value stack which result from pserameters passed by the
CALL LINK statement are automatically cleared by the LINK
subprogram, |f you directly manipulate the value stack, however, you
must restore the stack to its original state befcre returning control to
the LINK subprogram.

29

TEXAS INSTRUMENTS
HOME COMPUTER

PEEK SUBPROGRAM
Format: CALL PEEK(zddress, var,var....,"" address, var,...])

The PEEK subpregran is used to read bytes of CPU FAM directly into
TI BASIC variables.

The address parameler must be either a numeric exprassion or a
numeric variable. The address is a decimal value from — 32768 to
32767, representing a two-byte integer value. Addresses above >7FFF
are written as negative numbers, treating the value as a
two’s-complement integer. (For example, to access an address above
32767, subtract 65536 from it.)

The variable list (var parameters) must consist of numeric variables.
Each consecutive byte read from the memory is assigned to each
varlable in the order listed in the variable list. A null string (**")
separates one PEEK sequence from the next one 50 that you can
repeatedly PEEK several locations of memory in a single statement.

For exampie, the statement
CALL PIEK({8192,4,B,C(8)},"",24576,X)

reads three bytes from address > 2000 and up; assigns the values to
the variables A, B, ard C{8), consecutively; reads one byte from
location > A000; and stores the value in variable X.

The returned value is a one-byte value and is always in the range of 0
through 255.

PEEKV SUBPROGRAM
Format: CALL PEEKV{address, var,var,...," " ,address, var,..J}

The PEEKV subprogram is used to read byles from VDP RAM. It works
exactly as PEEK does, except ttat PEEKY accesses VDP RAM instead
of CPU RAM.

The address is a decimal value from @ to 16383, and the variable list
{var parameters) is a list of numeric variables which ase to contain the
values read. Note that the VDP has 16K of RAM, and trying to access
a memory address higher than 16383 may crash the system. Also, see
“PEEK Subprogram™ for more information.

30

Mini Memory

POKEV SUBPROGRAM
Format: CALL POKEV{address, var var,...,"”,address, var,..])
The POKEV Subprogram allows you to modify the value in the VDP

RAM. It works the same way as LOAD works when LOAD is used to
meodify CPU memory.

,.,._i The address ls a decimal value from 0 to 16383 and var is a numeric
- exprasslon or numeric variable that contains a value to be placed in

the VDF memory at the specified address. Each specified value Is

" stored consecutively beginning at the given address. For example, the
;- statement

CALL POKEV(784,30,30,30,*,2,V)

chenges color table 16 to color table 18 (> 310 t0 > 312 in the VDP
RAM), resulting in a black foreground and gray background. H the

- value of V is 161, the character “A” appears in the top left corner of

the screen.

CHARPAT SUBPROGRAM
Fomat: CALL CHARPAT(char-code, str-var|,char-code,strvar,...])

The CHARPAT subprogram returns 2 16-characier pattern Identifler
that specifies the pattern of the character-code

The char-code (character code) is any character number ranging from
32 through 159. Character codes 32 through 95 ithrough 127 on the
TI-98/4A) are normally reserved for ASCII characters and are initially
defined by the Tl BASIC interpreter. The string expression (definition)
of the character code is read into the str-var (string variable). This
expression consists of 16 characters of hexadecimal digits that
represent the character. Refer to the CHAR subprogram discussion in
the User's Reference Guide for more details on defining a character.

LOADING ASSEMBLY LANGUAGE PROGRAMS

The Mini Memory module and the Memory Expansion unit are a
powerful team. However, when they are used together, some care
must be exercised to ensure that your relocatable object files are
loaded into the proper memory areas.

i

TEXAS INSTRUMENTS
HOME COMPUTER

if both the Minl Memory module and the Memory Expansion unH are
being used, relocatable programs are lcaded into the memory space in
the following sequence.

1. The Memcary Expansion unit's highest memory segment {the
24K-byte area starting at > ADOQ).

2. The Memcry Expansion unit’s lowest memory segmen: {the 8K-byte
area starting at > 2000).

3. The Mini Memory module’s memory (the 4K-byte area starting at
>7118). '

The first free address in high memory Is Initialized to > A00O by the
INIT subprogram, and relocatable code is reallocated to ihe starting
load address. Whenever a “O-tag” is encountered, the starting load
acdress is updated from the first free address in high memory, and the
program fength is addec to this address. Subsequent programs are
loaded sequentially, beginning with the lowest address ir the high
memeory area. (See Appendix A for a map of CPU memory when both
the Mini Memory module and the Memory Expansion unit are utilized.)

If you are using the Mini Memory rodule only, without the Memory
Expansion unit attached to the console and turned on, ycur program
loads directly into the module’s Random Access Memory (RAM). The
first assembly language program is loaded starting at >7118, the
lowest available address In the module’s RAM,

At times, you may want to load a program directly into the Minl
Memory module when the Memory Expansion unit is attached,
bypassing the normal loading sequence. To do so, it is necessary to
make the Memory Expansion unit temporarily “invisible” 0 the systern
by clearing the values in memory locations > 7022 throug >7029 (see
Table 2, below). These are the pointer values that indicate the
presence of the Memory Expansion unit {see Table 1 for these values).

The easiest way to accomplish this task is to use 2 short TI BASIC
program including two versions of the LOAD subprogram, one with a
"poke” list and one that loads the assembly language program into
the Mini Memory module.

CALL INIT

100 CALL IOAD({28706,0,0,0,0,

0,0,0,Q)

110 CALL IQAD{“DSKL1.DEMQ”")

120 CALL LINK({“LINES”)

e EEE———————
32

Mini Memory

The CALL INIT command initializes the system, clearing any
praviously loaded data or program pointers. The first line of the
praogram zeroes references to the Mamory Expansion unit, starting at
memory location 28706 {>7022). Line 110 loads a program named
DEMQ from a diskette in Disk Drive 1, and line 120 executes DEMO,
starting at the entry point labeled LINES.

If you want to re-inform the system of the existence of the Memory
Expansion unit, you can again use CALL LOAD with a poke list of the
appropriate decimai values (see Table 1),

Table 1. Mini Memory variables, with
Mzmory Expansion unit attached and turned on.

Hex Decfmal

Location Value Vaiue
=>7022 =AD 160
»>7023 =>00 0
>7024 =>FF 255
>7025 =>E0D 224
>7026 >20 32
>7027 =>00 0
>7028 >3F 63
>7029 >FF 255

Table 2. Mini Memory variables, with
Memory Expansion unit unattached, turned off,

or “invisible.”
Hex Decimal
Location Value Value
>7022 =00 0
>7023 =00 0
>7024 =00 0
=>7025 =00 0
>7026 >00 0
>7027 >00 0
>T7028 >00 0
>7029 =00 0

You can aiso use the M {(Modify) command in EASY BUG to restore the
table values so that the system again recognizes the presence of the
Memory Expansion unit.

L e
33

TEXAS INSTRUMENTS
HOME COMPUTER

Mini Memory

Nete: When you are creating assembly language prograrms, it is
irportant to know how o use the proper assembly language
directives to make sure programs and associated data are loaded
ccrractly. Refer to the Editor/Assembler owner's manual for guidelinas
on writing a program so that it will load property.

SYSTEM UTILITY ROUTINES

The utility routines resicent in the Mini Memory module can be called
from an assembly language program to access machine resources and
interface with the Tl BASIC interpreter. The use of these routines
rejuires a knowledge of the routines themselves and the organization
of data used by the routines. Additional information on these topics is
included in the Editor/Assembiler owner's manual.

Two types of utility programs are provided in the Mini Memory module.

& One program contains a collection of standard system utilities with
which to link to ROMGROM routines, perform a keyboard scan,
access the VDP, etc.

m A second program contains Tl BASIC interface utilities with whicn
an assembly language program can access variables passed
through a CALL LINK statement in a TI 8ASIC program. This
program also contains an error-handling utility to retumn exceptlons
to a Tl BASIC program,

STANDARD UTILITIES

Al utility routines use UTILWS (address >7092) for utility workspace
registers, and all parameaters are passed through the call ng program’s
workspace registers. For your convenience, USRWSP (address > 70BB)
is reserved for your program's set of workspace registers. However,
any register area you provide can ke used to pass paramaters.

The following sections describe the data-passing conventions and
czlling-statement syntax for each rutine.

34

VDP Single Byte Wrlte — VSBW
Format: BLWP @VSBW Equates VSBW to >6024.
This routine writes a single-byte value to a specified VDP RAM
address.

RO The VDP RAM address.

R1 A one-byte value in the most significant byte of
Register 1.
Exemple;
LI RO, >0200 VDP RAM address >0200.
LI R1,>4100 Character code for A,
BLWP @VSBW Display the character.

This program displays the character “A"” on the screen at location
= 0200,

VDP Multiple Byte Write — VMBW
Format: BLWP @ VMBW Equates VMBW to >6028.

This routine writes multiple bytes from CPU RAM to VDP RAM.
RO VDP RAM address.

R1 Starting address of CPU RAM buffer,
R2 Number of bytes to write.

Exarmnple:
LI ED,>018E VDP RAM address >0i8E.
11 R1,HI Address of text.
LI R2,5 Number of bytes to write.
BLWP @VMBW Display the characters.

FI TEXT ‘HELLO® Text to be cisplayed.

This program displays the word “HELLO" in the middle of the screen
(VOP RAM address >>018E).

35

TEXAS INSTRUMENTS
HOME COMPUTER

VDP Single Byte Read — VSBR
Format: BLWP@&@ VSBR Equates VSBR to >B602C.

This routine reads a single byte from a specified VDP RAM address.

RO VDP RAM address.
E1 The value read from VDP RAM in the most
sigrificant byte.

Example:
LI RC,>0380 VDP RAM address > 0330.
BLWP @VSBR Read one byte,
This program reads one byte of the color table (> 0380) into the most
significant byte of Register 1.
VDP Muttiple Byte Read — YMBR
Format: BLWP@ VMER Equates VMBR to >6030.

This routine reads multiple bytes from YDP RAM into CPU RAM.

RD VDP RAM address to read from.
Ri Starling address of CPU RAM buffer.
R2 Number of bytes to read.

Example:
LI R0, >0300 VDP RAM address > 0300
LI R1,BJFF Buffer area.
LI R2,>0080 Lcad number of bytes to read.
BIWP @VMBR Read the bytes.
BU=F BSS > 0080 Set up buffer for bytes read.

This program copies the >0080 bytes of sprite attribute list data from
VDP RAM >0300 into the buffer area called BUFF.,

VDP Write to Reglster — VWTR
Format: BLWP@VWTR Equates VWTR to > 6034

This “outine wriles a single-byte value to any of the VDP RAM
reglsiers,
RO Least significant byte contains the value to be
written; most significant byte contains the VDP
regisier number [through 7).

“

36

Mini Memory

Keyboard Scan — KSCAN
Format: BLWP@ KSCAN Equates KSCAN to >8020.

This routine scans a specified keyboard and returns a keycode and
status. The following memory localions are used for communication
between a user program and the routine.
>8374 Keyboard device number. This one-byte number
must be specified by your program. The meaning
of this byte is the same as the key-unit in the Tl
BASIC KEY subprogram. See the User's
Reference Guide for more information on the

KEY subprog-am.
>8375 ASCI vaiue cf the key pressed (one byte).
>8376 Wired Remota Controller Y-position (one byte).
> 8377 Wired Remote Controller X-position {one byte).
>837C GPL status register (one byte).
The GPL (Graphic Programming Language) stztus byte may be tested
or return before the keycode is read. You can do this with a Compare
Ones Corresponding {COC) instrucilon. (See the Editor/Assembler
owner's manual for more information on this instruction.) Bit 5 of the
GPL status byte is set if a key was pressed on the last call to KSCAN.
The GPL status bits are assigned as follows.
H | GT |[COND|CARRY| OVF | 0 | 0 | O
7 | & + 5 [4 1 3 [21 110
See the “Extended Utilities” section for a mors complete description
of the other status bits.

EXTENDED UTILITIES

Extended utilities are provided to access routines in the console
GROMSs and ROMSs. These utilities are GPLLNK (link to GPL routines in
GROM), XMLLNK (link to routines in ROM), and DSRLNK (link to
Device Service Routines),

Since the extended utilities access routines in the console, extreme

care should be taken when you use these utliities. You should make
sure that the GPL workspace regislers ara not changed, the memory
space used by the console routine is set up pioperly, and the routine
returns corractly to your program.

e
37

TEXAS INSTRUMENTS
HOME COMPUTER

Linking to GROM-Resident Routines — GPLLNK

Format: BLWP&GPLLNK Equates GPLLNK to >6018.
DATA console-routine-address Gives address of GPL routine
to be executed.

The GPLLNK routine sets an internal flag to indicate that a GPL
program has been called from an assembly language program, loads
the GPL workspace (address > 83ED), branches 1o the GROM code,
and executes the GPL routine specifiad by the DATA direct ve.

The GPL routine must return with a RTN statement in order for the
program to transfer back to the caller. When the RTN statement is
encountered in the GPL routine, the statement returns to the system
routlne. The system routine checks tre internal flag and, finding it set,
retums further back to the assembly :anguage routine.

Some of the addresses of GPL routines and their caliing and returning
conventions ar¢ given below. The names FAC, STACK, and STATUS
are used in the following descriptions. FAC Is equated to >834A,
STACK is equated to >836E, and STATUS is equated to >837C.
STAUS Is the GPL status byte. It is organized as foliows.

High | Greater |Condition | Carry | Overflow [Unused
Bit 7 T76 1 5 I 4] 3 1210

Bit 7 Higt bit, Controlled during the execution of the GPL
interpreter, :

Bit6& Greater than bit. Controlled by the GPL interpretar during
the execution of the GPL program.

Bi15 Condition bit. Controlled by the GPL interpreter. The key-
scan routine tuins this bit on when a new key is
detected. Also, the DSR routine turns this bit on to
indicate that a flle does nct exist.

Bit 4 Carry bit. Controlled by the GPL interpreter.
Bit 3 Overflow bit. Centrolled by the GPL interpreter.

Mini Memory

The DATA directive specifies the address of the GPL routine to be
executed. Each routine is described below.

DATA =>0016

DATA =>0018

DATA >0020

DATA >0034

DATA >0036

Load Standard Character Set—Loads the standard

character set into VDP RAM.

Input: FAC—Pcinter to the beginning address in
VDP RAM where characters are loaded.

VDP RAM at the address specified in FAC
contains the standard character set.

Qutput:

Load Smal Character Set—Loads the small character
set (for TEXT mode) into VDP RAN.
Input: Same as Load Standard Character Set.

Output: Same as Load Standard Character Set.

Execute Power-Up Rouline—Powers up and initializes

the system.

Input: Nane.

Cutput: The system is powered up and initialized.
The sound and YDP circuits are cleared;
the default values for the VDP registers,
character set, color table, and status
block are loaded. The available VDP RAM
size is stored at > 8370.

Accept Tone—Issues an accepting tone for Input. No
memory setup is required prior to calllng the routine.

Bad Response Tone—Issues a bad-response tone
warning. No memory setup is required prior to calling
the routine.

3¢9

TEXAS INSTRUMENTS
HOME COMPUTER

Mini Memory

DATA >0038 Get String Space Routine—Allocates a memory space
in VDP RAM with a speclifiad number of bytes. This
routine should not be used outside the TI BASIC
environment, If there is not enough space, The routine
does a “garbage collection” to eliminate temporary
strings and then trias again. if there is stiil not enougr
space, the routine issues the MEMORY FULL error

message.

Input: Addresses >830C and > 830D should
contain the number of bytes to be
allocated.

Qutput: Address >831C points to the allocated

string space and address >831A points
to the first free address in VCP RAM. Ths
four byles at addresses > 8356 through
>>B359 are used by this routine. The FAC
area may be destroyed if a garbage
collection is done.

Note: Although this rcutine is designed to allocate a
string space in VDP RAM, it is also useful for assigning
space for the Peripheral Access Block (PAB! and data
buffer required by a DSR. See the Editor/Assembier
owner's manual for a description of Peripheral Access
Blocks.

DATA >003B 3it Reversal Routine—Provides a mirror imagje of a byte
of informaton. It is used most commonly to form a
mirror image of a character definition.

Input: FAC—Address of data in VDP RAM.
FAC + 2--Number of bytes to reverse.
Qutput: The specified number of bytes in the VDP

RAM are bit-reversed; that Is, bits 0 and 7,
bits 1 and 6, bits 2 and 5, and bits 3 and 4
are exchanged.

Stde Effects: CPU RAM from > 8300 through 8340 is
erased.

DATA >003D Cassette Device Service Routine—Accesses the
cassette DSR routine.

Input: The Peripheral Access Block and data
buffer must be set up in VDP RAM prior
to the czll. The screan offset |s > &0 for
Ti BASIC and =00 outside the TI BASIC
environment. The screen start address
must be =00 for the prompts issued by
the cassette DSR. FAC is the device
name (for example, “C81”), Address
=>8356 points to the first charzcter after
the name in the PAB. Addresses > 8354
and > 8355 are the length of the name {for
example. >0003 for “CS1"). The word at
address > 83D0 shauld be set to > 0000.
Address >836D must be set to >08 to
indicate a DSR call. The STATUS byte
must be >00.

Output: The cassette DSR prompts for the
operation of the cassette.

DATA =004A Load Lower Case Character Set—Loads the lower-case
character set into VDP RAM. Inpu; and Qutput are the
same as those in loading other character sets.

Note: This routine applies only to the TI-99/4A console,

One of the uses for the GPL link routine is to call the floating-point
routines written in GPL from an assembly language program. When

“these floating-point routines are called, the contents of CPU RAM

locations >834A through >836F may be used, and VDP RAM
locations =03C0 through >03DF are used as a suffer area.

The GPL status byte reflects the condition of the calculation. All of
the input and cutput data valuaes are in floating-point format.

41

TEXAS INSTRUMENTS

HCME COMPUTER

Mini Memory

—

When errors ocour during the execution of floating-point routines, they
are indicated in CPU RAM location =B354. The error codes are given

below.

Code

0
02
03
04
05
06
07

Errecr Description

Overflow error.

Syntax error.

Integer overflow on conversion,

Square root of negative number.

Negative number raised to non-integer power,
Log of negative number or zero.

invalid argument in trig function.

The lloating-poit routines are descrited below.

DATA >0014 Convert Number to String (CNS)—Converts a floating-
point number to an ASCII string.

42

Input:

Quiput:

FAC—B8-tyte floating-point value.

FAC + 11—If set to zero, the output string
is in BASIC format. Otherwise, the cutput
is in FIX mode, which requires data in
FAC +12and FAC +13.

FAC +12—If one, it expresses overflow
from the calculation range by = EE.._.E.
Underflow is expressed as zero,

FAC + 13—The number of digits to fix to
the right of the decimal poini. A negative
value disables the FIX mode.

FAC—Madified.

FAC + 11—The least significant byte of
the address where the result stiing is
located. The value >8300 must be added
to obtain the real address.

FAC + 12—The length of the string in
bytes.

DATA >0022 Greatest Integer Function (INT)—Computes the greatest
integer contained in the value,

DATA >0024

DATA > 0026

Input:
Output:

FAC—The floating-point value.
FAC—The result. For positlve numbers,
the integer Is the truncated value. For
negative numbers, the integer is the
truncated value plus one.

STATUS—5et according to result.

Involution Routine (PWR)—Raisas a number to a
specified powar.

Input:

Qutput:

Side Effects:

FAC—The exponent value.
STACK—The pointer to the stack in VDP
RAM which contains the 8-byte value.

FAC—The result In floating-point format.
This is computed as EXP {exponent value)
* LOG (ABS(base).

STATUS—Sst according to resuli. Error
conditions: Negalive number raised to a
non-in‘eger power, and zero raised to a
negative power.

Locations >8375and > 8376 are
destroyed, and the one-word content of
>836E is decremznted by 8. Also, the
addresses FAC +12 through FAC + 19 are
destroyed.

Square Root Routine (SQR)—Camputes the square root

of a number.
input:

Output:

Side Effects:

FAC—The input value.

FAC—The square root of the input vaiue,
STATLS—Set according to result.
Addresses >837f and >8376 are
destroyed.

TEXAS INSTRUMENTS

HOME COMPUTER

DATA >0028 Exponent Rcutine (EXP)—Gomputes the inverse natural
lcgarithm of the input value.

DATA >002A

DATA >002C

DATA =002E

DATA >0030

Irput;
Cutput:

Side Effects:

FAC—Tha input value.

FAC—The resulting value.
STATUS—Set according to result.

Addresses > 8375 and >8376 are
destroyec,

Natural Logarithm Rout ne {LOG)—Computes the
natural log of a number.

Input:
Output:

Slde Effects:

FAC—The input value.

FAC--The natural fog of the input value.
STATUS — Set according to result.

Addresses > 8375 and > 8376 ale
destroyed,

Cosine Routine {COS)—Computes the cosine of a

number.
Input:
Output:

Side Effects;

FAC—The input value,

FAC—The cosine of the input value,
STATUS—Set according to resuylt,

Locations > 8375 and >8376 are
destroyed,

Sine Routine [SIN)—Computes the sine of a humber.

Input:
Output:

Side Effects:

FAC—The input value,

FAC—The sine of the input valus.
STATUS—Set according to result.

Locations >8375 and > 8376 are
destroyed.

Tangent Routine (TAN)—Computes the tangenl of a

number,
Input:

Output:

Side Effects:

FAC—The input value.

FAC—The tangent of the input value.
STATUS-—Set according to result.

Locations = 8375 and >8376 are
destroyed.

m

Mini Memory

DATA >0032 Arctangent Routine (ATN)—Computes the arctangent of

a number.
Input: FAC—The input value.
Output: FAC—The arctangent of the input value.

STATUS—Set according to result.

Side Effects: Locations >B8375 and > 8376 are
destroyed.

Befors calling a GPL routine, check to see if any memory used by your
program is accessed and modified In the routine. {Refer to the “Side
Effects” described above.) Since CPU RAM (s used by many system
programs, it’s easy to overlook information stored there, Also, some of
these routines use up to 26 bytes of the BASIC Interpreter rollout area
beginning at location >03C0 in VDP RAM. Thereforae, exercise caution
when you call a GPL reutine,

Linking to ROM-Resldent Routines — XMLLNK

Format: BLWP @ XMLLNK Equates XMLLNK to =>601C.
DATA console-routine-code Defines ID ccde of ROM
routine to be executed.
or
DATA console-routine-address Glves address of ROM
routine to be executed.

Routines in the congola ROM can be accessed through the XMLLNK
routine. You can access a routlne in console ROM in ore of two ways.

One way is to specify the routine’s code in a DATA statament. The
iow byte of the DATA statement should be set to zero. For example,
BLWP 8XMLLNK
DATA =1200

kranches to the routine CFI (convert floating point to integer) in the
console.

TEXAS INSTRUMENTS
HOME COMPUTER

A-llst of XML routine codes that can be called from an assembly
language program are given In the following table.

Routine
Code Name Function

06 FADD Floating-point additlon
o7 FsSUe Floating-point subtraction
08 FMULT Floating-point multiplication
09 FDIV Floating-point division
0A FCOMP Floating-point compare operation
0B SADD Floatingpoint stack addition
0C SSUB Floating-point stack subtraction
0D SMULT Floating-point stack multipllcation
OE SDIvV Floating-point stack division
OF SCOMP Fioatingpoint stack compare
10 CSN Convert string to number
12 CFl Convert floating-paint format to integer
17 VPUSHG Push a value into value stack
18 VPOF Pop a value from value stack
23 CiF Convert integer to floating point

The XML code, which is a single byte, is split into a high nybble,
containing the XML table address, and a low nybble, containing the
index into that table. There are 16 table addresses defined in the CPU
addrass space. The high nybbie specifies from which of the 16 tables
to get the branch address, and the low nybbile determines which of the
16 addresses in the table is to be used. Each table can contain up to
16 two-byte entry point addresses.

- Mini Memory

Another way to access a routine in the console ROM is to specify its
address in the DATA statement. Note that the high bit of the DATA
word must be set so that the sysiem program recognizes this data as
an address instead of an XML code. For exampie,

BLWP @XMLLNK
DATA 8034

branches to the console ROM address >0D3A, which is a floating:
point compare routine.

WARNING

Using direct memory addresses of console
ROM routines makes the assembly
language program calling the routine
completely machine dependent. Since the
memory addresses of console 30M
routines may changs with futuse
modifications, use of this method of
access should be restricted 1o cases where
there is no other reasonable way 1o achieve
the required resuit.

FAC (the Floating Point Accurnulator) starts at address >>834A, ARG
iwhich contains arguments} starts at address >835C, and STACK is at
address >836E. The STATUS byte is at address >837C. All overflow
errors, except in Convert Floating Point to Integer (CFI), return >01 at
address > 8354,

DATA >0600 Floating Point Addition (FADD)—Adds two values.

Input: FAC-First value.
ARG—Second value.

Qutput: FAC—Result of the addition.

DATA =>0700 Floating Point Subiraction {FSUB)—Subtracts two

values,

Input; FAC—Value to be subtracted.
ARG—Value from which FAC is
subtracted.

Output: FAC—Result of the subtraction.

I

47

TEXAS INSTRUMENTS
HOME COMPUTER

DATA >0800 Floating Pcint Multiplication (FMULT)—Mulitiplies two

values.
Input: FAC—MNultipHer.
ARG—Muitiplfcand.
Qutput: FAC—Result of the multiplication.
DATA >0800 Floating Pdint Division (FDIV)—Dvides two values.
Input: FAC—Dlvisor,
ARG—Dlvidend.
Qutput: FAC—Rszsult of the division.

DATA >0AO0Q Floating Point Compars (FCOM)—Compares two
fioating-point numbers,

Input; ARG--First argument.
FAC—Second argument,
Output: STATUS—Set according to result. The

high bit is set if ARG is logically higher
than FAC. The greater than bit is set if
ARG is arithmetically greater than FAC.

The equal bit is set If ARG and FAG are equal.

DATA >0B00 Value Stack Addlition (SADD)—Subtracts using a stack
in VDP RAM.
Input: STACK—Address in VOP RAM where the
left-hand term is located.
FAC—Right-hand value.

Cutput: FAC—Result of the addition.

DATA >0C00 Value Stack Subtraction {SSUB)—Subtracts using a
stack in VDP RAM.

Input: STACK—VDP RAM address that contains
the lefi-hand term.
FAC—Value to be subtracted.

Output: FAC—Result of the subtractior.
DATA >0D00 Value Stack Multiplication {(SMULT)—Multiplies using a

slack in VDF RAM.

input; STACK—VDP RAM address that contains
the multlplicand.
FAC—Multipiier vaiue.

Qutput: FAC—Result of the multiplication.

T
48

Mini Memory

DATA >0EQ0 Value Stack Division (SDIV)—Divides using a stack in

VDP RAM.

Input: STACK—VDP RAM address that contalns
the dividend.
FAC—Divisor value,

Output: FAC—Result of the division,

DATA >0F00 Value Stack Compare {(SCOMPI—Compares a valusa In
the VDP RAM stack to the value in FAC.
Input: STACK—VDP RAM address that contains
the value to be compared.
FAC—The other value in the comparison.

Qutput: STATUS—Set according to result. The
high bit is set if the value pointed to by
STACK is logically higher than FAC. The
greater than bit .5 set if the value pointed
to by STACK is arithmetically greater
than ~AC. The equal bit is set if the
values pointed to by STACK and FAC are
equal

CATA >1000 Convert $tring to Number (CSN)—Coverts an ASCIt
string to a floating-point numbsr.

Input: FAC +12—Address of the string in VDP
RAM.
Qutput: FAC—Result of the conversion in

floating-point format,

CATA >1200 Convert Floating Point to Integer (CFI}—Converts a
floating-point numbear to an integer.

Input: FAC—Floating-point number to be
convertad.
Qutput: FAC—The one-word integer value, The

maximum value s > FFFF. If an overfiow
occurs, FAC + 10 (> 8354} is set to the
overflow error code, =>03.

DATA >1700 Push Value onto Value Stack (YPUSHG)—Pushes a
value from FAC onto the value stack.

DATA >1800 Pop Valug from Valye Stack (VPOP)—Pops a value from
the value stack and places it in FAC.

49

TEXAS INSTRUMENTS
HOME COMPUTER

DATA >2300 Convert Integer to Floating Point (CIF)—Convarts an
integer 10 a {loating-point number.

Input: FAC—The one-word integer value to be
converted.
Qutput: FAC—Floating-point result.

Linking to Device Service Routines—DBSRLNK

Format: BLWP @ DSRLNK Equates DSRLNK to > 6038.
DATA console-routine-code Defines code of BSR routine
to be executed.

DSALNK links an assembly language srogram to any Device Service
Routlne (DSR) or subprogram in ROM. The data glven Is =8 for linkage
to a Device Service Routine and > 10 lor linkage to a subpregram.
Before this routine is called, a Peripheral Access Block (PAB) must be
set up in VDP RAM. A PABis a block of memory that contains
information about the file to be accessed. In addition, CPU RAM
addresses > 8386 through >8357 must contain a pointer to the device
or subprogram rame length in the PAB.

After the routine is executed, information is passed back to your
assembly language program in the UTLTAB area. For example,
suppose that the following instructions are executed.

RE? DSRLINK
BLWP @DSRLNK
DATA =8

If no error occurs, the equal bit in the Status Register is reset on
return from DSRALNK. If an /0 error occurs, the egual bit is sst, and the
arror code is stared in the most significant byte of Register) of the
catling program's workspace.

50

Mini Memory

f calling the RS232 Device Service Routine, your program must
preserve and then restore the values stored in the GROM-Read and
GROM-Wrlte addresses. The following program segment shows how to
adjust these values.

REF GEMRA

REF GEMWA

SAVEG BS5 2

MOVB BGRMRA,3SAVEG
MOVB @GRMRA,@SAVEG+L
DEC @SAVEG

BLVP @DRSLNK
DATA >B

MOVB @SAVEG,3GRMWA
MOVE 8SAVEG+L,@GRMWA

Note: Since the cassette DSR is in the GROM, it must be accessed
through GPLLNK, rather than DSRLNK. To sccess a cassette, use
BLWP @GPLLNK with DATA > 003D.

51

TEXAS INSTRUMENTS
HOME COMPUTER

Ti BASIC INTERFACE UTILITIES

These utilitles allow an assembly language program to read or assign
values to variables passed in a parameter lst from a CALL LINK
stazement in a TI BASIC program, These utility routines in¢lude
argument-passing utilities and an error-reporting utility.

All of the argument-passing routines use their own workspace area,
located at 7092, However, all the parameters are passed through the
calling program's workspace,

The following sections describe the data-passing conventions and the
calling-staterment syntax for each routine.

Numerlc Assignment — NUMASG
Format: BLWP @NUMASG Ejuates NUMASG to >8040.

This routine assigns a numerlc value to a numeric variable passed as
an argument.

R} Zero if a simple numeric variable is used, or
an array element number If an assignment is
made to an array element. The assighment
ulitity tests for legal bounds on the element
number. With OPTION EASE 0, the element
number must range from 0 to {maximum
number of elements — 1). With OPTION BASE
1, the elemert number must range from 1 to
ths maximum number of elements.

R1 Argument number (full word) as it appears In
tha argument list of the CALL LINK
statement.

>834A FAC area. Contains an 8byte floating-polint
vaue to be assigned to the varlable.

If the requested argument is not a nuneric variable or a numeric array
element, an error message is issued.

52

Mini Memory

String Assignment — STRASG
Format: BLWP @STRASG Equates STRASG to >6048.

This routine assigns a string to a string variable passed as an
argument to your assembly language program. The utility does the
following.
m Allocates space for the string in VOP RAM.
m Copies the string into the allocated VDP RAM.
m Assigns the string to the selected variable,
ifi urnent stack entry to peint to the new
’ ;ﬂ:ﬁ:g{eﬁh?;ﬂ:g":: Ibaergassigned must ben::reated in RAM by your
assembly language program. The first byte of the string contains
the length of the string.

The registers are assigned the following values.

RO Zero if a string is assigned to a simple string
variable, or an array element number if
assigned to an array element. With OPTION
BASE 0, the element number must range from
0 to {maximum number of elements — 1).
With OPTICN BASE 1, the element number
must range from 1 to the maximum number of
elements.

Rt Argument number as it appears in the
argument list of the CALL LINK statement
{ona full word}.

R2 Address of the string to be assigned. The
string must be in RAM.

I the argument specified is not a string variable or an elsment of a
siring array, an error message is lssued.

53

TEXAS INSTRUMENTS
HOME COMPUTER

Get Numeric Parameter — NUMREF

Format: BLWP @ NUMREF Equates NUMREF to 6044,
This utility retrieves the value of a numeric parameter.
RO Array element number if the argument is a
numeric array; otherwise, zero.
A1 Parameter number as It appears in the

agument list of the CALL LINK statement,

>834A FAC area. The beginning address of an 8-byte
value of the numeric parameter, returned by
the utility routine.

Get String Parameter — STRREF
Format: BLWP @STRREF Equates STRREF to =>604C.

This routine retrieves the value of a string parameter. Your program
must allocate space in RAM memory before calling this routine, and
the first byte of this allocated buffer must contain the maximum

buffer iength, if the string Joes not fit in the buffer, an error condition
oceurs.

RO Array element number if the argumant is a
string array; otharwise, zero.

R1 Parameter number as it appears in the
argument list of the CALL LINK statement.

Rz Address of the buffer you assign.

If the string fits in the buffer, the string is copied into the buffer
following the length byte, and the length byte is modified to reflect the
actual length of the string.

Emror Reporting — ERR
Format: BLWP @ERR Equates ERR to > 6050.
This 1outine transfers controi to the airor-reporting routing in the Tl

BASIC interpreter. The assembly language program may report any

existing TI BASIC error or warning message upon returning to TI
BASIC.

RO Error code in the most significant byte.

M

54

Mini Memory

The error messages that can be issued from your program are listed in
the following table,

CAUTION

Error codes smallerthan > 10 are reserved
for the Minl Memory module. Therefore,
using these codes in your program can
cause unpredictable side-etfects.

Code Error Message Coue Error Message
a0 DSR error-Bad Name 14 Number Too Big
01 DSR error-Write Protected 16 String-Number Mismatch
02 DSA error-Bad Atiribute 18 Bad Argument
03 DSA error-lllegal Operation 17 Bad Subscript
04 DSR error-Buifer Full 18 Name Conflict
05 DSR error-Read Past EOF 19 Can’t Po That
06 DSR error-Device Error 1A Bad Line Number
07 DSR error-File Error 1B For-Next Error
08 Memory Full {closes flle) 1C 0 Error.(assumes PAB
09 Incorrect Statement (N/A) agdress in >8304)
0A Bad Tag 10 File Error
oB Checksum Error 1E Input Error
oc Duplicate Definition 1F D_ata Error
oD Unresolved References 20 Line Too Long
OE Incorrect Statement (N/A) 21 Memory Full (does not
OF Prcgram Not Found close file)
10 Incorrect Statement 22 Synlax‘ Error
11 Bad Name 23 Numeric (?verflow
12 Can’t Continue 24 Unreccgnized Character
13 Bad Value 25 String Truncated

26-FF Unknown Error

85

TEXAS INSTRUMENTS
HOME COMPUTER

SAMPLE PROGRAM

The following program is sinilar to the DISPLAY..AT routine In
Tl Exiended BASIC. It illustrates the system utilities which interface
with the machine resources and the Tl BASIC Interpreter.

The program listing follows the convertions required by the _ine-by-
Line Assembler, which is stored on the cassette tape included with
the Minl Memory module. To anter the program via the Editor/
Assembler program, you mist follow the conventions described in the
Editor/Assembler owner’s manual. For your convenience, the REFs
that are applicable to the Editor/Assembler prograem are given below.

ERXRHRAHR KRR X RN ERHERHRRININR R R ERE AN KUK RRERENE RN R

¥ THESE REFS ALLOW PROCRAM ENTRY VIA THE EDITOR/ASSEMBLER
NIRRT I I IR IR IR RN RN R

REF VSEW VDP SINGL BYTE WRITE
REF VNBR VDP MULT BYTE READ
REF VNBW VDP MULT BYTE WRITE
REF NUMREF GET NUMERIC PARAM.
REF XNLLNK EXECUTE ROM RCUTINE
REF SIRREF GET STRING PARAM.

REF EFR EXECUTE ERR RPT RCUTINE
FC EQU 8344 FLOATING ACCUM

DEF DISP$
LA bR Rt s s 2t R F R R I L I S e T T
* THESE EQUATES ALLOW PROGRAM ENTRY
* VIA THE LINE-BY-LINE ASSEMBLER

FHRRKER KRR KRN ERE IR NN NN E IR MR NI AN NN

FC EQU »£344 FLOATING ACCUM

SW EQU >6024 VDP SINGL BYTE WRITE

MR EQU »€030 VDP MULT BYTE REAT

MW EQU €028 VDP MULT BYTE WRITE

NR EQU >€044 GET NUMERIC PARAM.

SR EQU »604C GET STRING PARAM.

XM EQU >&01C EXECUTE ROM ROUTIME

ER EQU »6250 EXECUTE ZRR RPT ROUTINE
FRNRHERRERINKF IR IR R R R RSN EH RN RR R

Mini Memory

D00

o0
TEOD

ACRG »7D00
Bl BSS 256 STRING BUFFER
B2 BSS 32 LINE BUFFER {FOR SCROLLING)
FRARN NN AR ERAEREERARRERRER KNI MR NI R ERREEF RN
REGISTER USAGE
RC TEMP VAR VDP ADDR ERR #{MSBY}
Rl TEMP VAR VDP DATA(MSBY) CPU BUFF ADDR
R2 TEMF VAR BYTE COUNT STR BUFF PTR
R3 STRING BUFF PTR
R4 VDP SCREEN ADDR OF CHAR
R5 COUNT OF BYTES LEFT TC FRINT

Ré
R7
R8
RS
R10
R11
R12
R13
R14
R15

Mook A ok ok ok oK ok K ok A koW ok K ok K OX

SCREEN OFFSET ZONST FOR BASIC
EDGE OF SCREEN LIMIT VARTABLE

2ND LEVEL LINKAGE
BASIC RETURN LINKAGE
SUBRCUTINE LIN{ FOR BL
CRU BASE ADDR (UNUSED)
TEMP VARIABLE FOR SCROLI
TEMP VARIABLE FOR SCROLL
TEMP VARIABLE FOR SCROLL

FRRRERAENHH RN RN R RN RN KM KRN NN T RNH

57

TEXAS INSTRUMENTS
HOME COMPUTER

FRRHHFH NIRRT IR RH RO IR R E AR
MINIMAL IMPLEMENTATION (DISPLAY...AT) '

IS ALIOWED.

W o ok K ok K K ok K

YE20 C28B DE MOV Ri1,R10
7E22 04CO CLR R0
7E24 0201 LI R1 1
TE26 0001

7E28 D6AD BL @G
7E2A 7E6C

7E2C D6AD BL 8L¢
7E2E 7E78

7E30 2001 DATA 1
7E32 J018 DATA 24
7E34 120 MOV @IC,R4
7E36 334A

7E38 1604 DEC R4
TE3A DA54 SLA R4,5
7E3C 0104 MOV R4,R7
7E3E 0581 INC R1
7ELQ DBAQ BL 8GN
7E42 TE6C

TE44 DBAD BL &L
YELG TE78

TE48 0001 DATA 1
TELA 001C DATA 28
TE4C A120 A 8FC,R4
TE4E 834A

TESO 0584 INC R4
7ES52 0581 INC R1

58

THE SYNTAX FOR THE BASIC STATEMENT IS:
CAIL LINK{“DISP$",ROW,COL,STRING)

NOTE THAT ONLY 3TRINGS MAY BE DISPLAYED,
AND ONLY ONE STEING PER CALL STATEMENT

THERE IS LIMIT CHECKING ON

ROW & COLUMN VAIUES,
FRERIIH IR RN IR RN IRTIIEN I KK NI H R K M

SAVE LINK TO BASIC
CLR TO GET VALUE
INITTALIZE PARAM PNTR

GET ROW NUMBER
CHECK FCR IN LIMITS

MIN ROW VALUE
MAX ROW VALUE
GET ROW VALUE

ADJUST FOR MACH LANG
MPY ROW BY 32

MAKE COPY OF ROW ADDR
INCR PARAM PNTR

GET COL NUMBER

CHECK LIMITS
MIN COL=1

MAX COL=28

ADD IN ROW VAL

ADJ FOR BASIC
INCR PARAM PNTR

Mini Memory

b

7E54 0202
7ES6 7TDOO
7E38 0712
7E5A 0420
7ESC 604C
7ESE Q4G5
7E60 COC2
7Eé2 D173
7E64 06G5
7E66 06A0
7E6B 7EBE
TE6A 0454

7E6C 0420
7E6E 6044
7E70 0420
7ET2 601C
7E?4 1200
7E?6 045B

LI Re,B1 LOAD FIRST BUFFR PNTR
SETO *R2 MAX STR LEN = 255
BLMWP @SR GET BASIC STRING

CLE R5 CLR BITE COUNT

MOVE R2,R3 COPY 3UFFR PNTH

MOVB *R3+,R5 GET LINGTH BYTE

SWFB R5 LEFT ADJ BYTE

BL €PR

B #R10 RETURY BASIG

ERREFEXLEARAXXEXXARIEREERXRRERERRERERX AR XXX EAXARTR

oM K kK XK

GN - GET NUMERIC PARAMETER

GETS THE BASIC NUMERIC PARAMETER,
CONVERTS IT "0 INTEGER, AND LEAVES THE
RESULT IN FC (FLOATING ACC >8344)

FHNE N RN NN R EHNR RN RN ER R R RN E R KRR R

GN

BLWF @NR GET BASIC NUMB.
BLWP @XM GO TO ROM CODE
DATA =1200 FLTPT-TG-INTGR
B ¥R11 RETURN

59

TEXAS INSTRUMENTS
HOME COMPUTER

Mini Memory

7E78 3EED
TE7A 3344
7E7C L104
7E7E 3EEQ
7ESQ 3344
7E82 1501
7E84 045B
7E86 1300
7ES8 1300
7ESA 0420
7ESC 6050

Lidaal et el syttt s s b s e b AT ST

¥ K ok Ak ok ok ok om K

LC - LIMIT CHECK ON SIGNED INTEGIR

CHECKS THE WORD VALUE IN FC AGAINST THE
UPPER AND LOWER LIMITS WHICH FOLLOV THE
BL CALL, IF THE VALUE IS QUTSIDE
LIMITS, THE ERROR ROUTINE IS CALLED
WITH THE CODE FOR ‘BAD VALUE',
OTHERVISE, CONTROL RETURNS TO THE
CALLING PROGRAM.

Liiad et atirsan bt iib it s st AL L)

1c

EC

¢ 8FC,*R11+ CHK LOWER LIM.

JLT EC IF LESS, ERROR
C @FC,*R11+ CHK UPPER LIM.
JOT EC IF MORE, ERROR
B *R11 RETURN

LI RO, >1300 LOAD ERROR CODE

BLWP EER 0 TO ERR ROUTN

7EBE
7E90
TE92
7EG4
7096
7198
TE9A
719C
7I9E
TLAD
TEA2
7EA4
7EAD
7EA8
7EAA
TEAC
7LAE
7EBO
7IB2
7EB4

C24B
0227
001E
0206
6000
C004
DO73
BO46
0420
6024
0584
0605
1601
0459
8104
1AF5
0227
0020
0224
0004

FREXHHEE AR R RIIIA RN R RN RN R R RIS R I E TN H AN H TR R

B o N o ok o ok ok ok ok ok E ok

PRINT STRING FROM CPU BUFFER

SINCE THIS FROGRAM IS CALLED FROM BASIC,
THERE IS A SCREEN BIAS OF »60 (I.E.,
SCREEN VAL=2SCII VAL + >60)

UPON ENTRY 10 THIS ROUTINE, THE
FOLLOWING REGISTERS ARE INITIALIZED

R3 - POINTER TO START OF STRING
IN CPU RAM

R4 - BEGINNNG SCREEN (VDF) ADIR

RS - LENGTH OF STRING

R? - START-OF-ROW ADDR (ROW%32}

FRENRE KRR TN R AN KRN K I I N TF 333633 230036036 20 36 2 % N

PR

11

SAVE SUBROUTINE LINKAGE
ADD FOL OFFSET

MOV R11l, R9
A1 R7,320

L1 R6, =600) ASCII CFF CONST

MOV R4 ,RO MOV VDP ADDR
MOVB #R3+,R. GET LEN BYTE

AE R6,R1 ADD ASCI OFFST

BLWP @sW WRITE ONE BYTE

INC R4 POINT TD NEXT

DEC R5 DEC CHAR COUNT

JNE L1 JUMP IF NOT DONE

B *R9 RET TO MAIN PRG

C R4,R7 IS NEXT POSITION OFF THE EDGE
JL RE IF 0K, JUMP & MOVE BYTE

Al R7,32 INCR CHEK LIM

AT R4,4 ADDR PNTR TO NEXT LINE

81

TEXAS INSTRUMENTS
HOME COMPUTER

7EB6 COO7 MOV R7,RO
7EB8 0950 SRL ROD,5
7EBA 0280 CI RC,24
7EBC 0018

7EBE 1AEC JL RE
TECO D640 BL 8SC
7EC2 7ECE

7TEC4 0227 Al R7,-32
7EC6 FFEO

7EC8 0224 Al R4,-32
7ECA FFEQ

7ECC 10E5 JMP RE

COPY LINEND LIM
DIVIDE ADDR BY 32

5 IT OUT JOF LIMITS
IF IN LIMITS,

{MP & SET UP ADDR
SCROLL THE SCREEN
BRING LIMIT ON SCREEN
ERING ADDR ON SCREEN

CET UP NEW ADDR

HEHRMA R TR RR R RS IIHH NI I IR HR R NI N R H N N
* SCROLL - SCROLL THE SCREEN UP AND FILL

*

THE BOTTOM LINE WITH SPACES

FEXREXNR KRR RRERERERREA R R REEXN R AR RE XN RH AR

7ECE 0200 8¢ LI RO,-32
7ED0O FFEO

7ED2 0201 LT R1,B2
7ED4 7EOQ

7EDS 0202 LI R2, 32
7EDS 0020

TEDA 0220 L4 AT RO,64
7EDC 040

7EDE 2420 BLWP @MR
7EEO 5030

7EEZ2 9220 AL RO,-32
7EE4 FFEO

7EEE 0280 CI RO,»2E0
7EE8 D2EQ

62

SET UP SCREEN

SET UP BUFFR PNTIR

SET UP BUFFR LEN

MOV DOWN ONE LINE

READ A LINE INTO BUFFR

ADJUST ALDR FOR ONE LINE UP

IS THIS LAST

Mini Memory

7EEA
7EEC
7EEE
TEFQ
7EF2
7EF4
TEF6
7EF8
7EFA
7EFC
VEFE
7F00
7F02

1109
1301
D45B
€341
£382
020F
2020
CF4F
064K
16FD
0420
6028
10EB

51

L3

JLT NP

JiQ 51

B *R11

MOV R1,R13
MOV R2,R14
LI R15,»20z0

MOV R15,*R13+
DECT Ri4

JNE L3

BLWP @MW

JMP L4
END

IF NOT, STORE LINE
JUMP IF LAST LINE
SCROLL IS DONE
COPY BUFFR PNTR
COPY BUFFER LEN
LOAD 2 SPACE DATA

MOV ONE BYTE
DEC BYTE COUNT
PAD NEXT WORD
MULT BYTE WRITE

63

TEXAS INSTRUMENTS
HOME COMPUTER

EASY BUG DEBUGGER

EASY BUG is a useful program development tool with which you can
[:iebug your assembly language programs and access the memory
input/output {(IfO) ports of the computer. With EASY BUG, you can:

& Inspect and, optionally, modify the contents of CPU and VDP
memory.

m Display the contents of GROM.
m Execute assembly language programs from EASY BUG.

m Directly access the peripheral devices which are connacted to the
computer via the TMS9900 microprocessor’s serial /O port, the
Communications Register Unit (CRU)

m Save and load programs on casssetts,

OPERATION

When the EASY EUG option Is selected from the master selection list,
the following screen is displayed.

===COMMAND TYPES ARE==-
MXXXX MODIFY CPU MEMORY
GXXXX DISPLAY GROM MEMORY
VIOOXX MODIFY VDP MEMORY
EXOX EXEC, ASSEKBLY PROGRAN
CXXXX CRU SINGLE-BIT 1,/
SXXXX SAVE CPU MEMORY TO CS-
(STARTING IT X0X)
L LOAD STORAGE FROM CS1

===SPECIAL FUNCTICN KEYS ARE-===

AID DISPLAY THIS SCREEN

PERIOD ABORT A COMMAND

ENTER ENTER COMMAND/DATA

MINGS DISPLAY IAST MEMORY
{CURRENT UNCHANGED)

SPACE DISPLAY NEXT MEMORY
(CURRENT UNCHANGED}

®NOTE* CPU RAM 8370-83FF IS
RESERVED FOR EASY BUG

This screen summarizes the commands and special function keys
used with EASY BUJG. The “X's” foliowing the letter commands
Indlcate a hexadecimal address that you enter.

e ——
64

Mini Memory

Press any key except QUIT to clear the screen znd receive a question
ma‘k {?) prompt, asking for a command entry,

COMMANDS AND SPECIAL FUNCTION KEYS

A single letter command Is used to execute each routine of EASY
BUG. Each command (with the exception of the Load Storage
command) should be followed by up to four hexadecimal digits
indicating an address. if you enter more than four digits, only the last
four are used. If less than four digits are entered, they are treated as
the last digits of a four-digit value, with the first digits being zero.
After typing a command and an address, press ENTER to execuie the
command.
M (ModIfy GPU Memory) Allows you to nspect and, optionally,
change the contents of CPU memory.

G (Display GROM Memory) Allows you to display the contents of
. GROM memaory.
Allows you to nspect and, optionally,
change the contents of VDP memory.
E (Execute Assembly Program) Allows you to ‘un an assembly
language program in CPU RAM.
Allows you to nspect and, optionally,
change Individual /O bits.

Allows you to transfer the contents of
CPU memory to an audio cassette.

L (Load Storags) Allows you to oad an assembly
language program from cassette Into
CPU memory.

V {Modify VDP Memory)}

C (CRU SingleBit 1/0)

S (Save CPU Memory)

To stop a command’s opsration, press the PERIOD (.} key. The
question-mark prompt reappears.

The ENTER, MINUS, and SPACE function keys are used with the Modify
CPU Memory (M), Display GROM Memory (G), Modify VDP Memory (V),
and CRU Single-BIt VO (C) commands. The functions of these keys arg
Inciuded in the descriptions of these commands.

Press AID to return to the EASY BUG display screen after the screen
has been cleared. This key works only when it is entered immediately
after a question-mark prompt from EASY BUG.

Each of the EASY BUG commands is described in the following sectlons.

2P
65

TEXAS INSTRUMENTS
HOME COMPUTER

Modify CPU Memory — M

Format: Mxxxx (where xxxx Is a hexadecimal valug)

This command displays the contents of a selected CPU memory
location and gives you the option of ¢changing the data in that
locatian, If a memory locatlon is not specified with the command,
> 0000 is used.

After you type the command and. address and press ENTER, tle
specified memory address and its contents are displayed.

To change the contents of the displayed memory address, type a two-
digit hexadecimal value and press ENTER. The last two diglts you type
are the value used; thus, If you make a mistake when entering a value,
simply keep typing untll the last two dights are correct. Notice that the
left- and right-arrcw keys do not work with EASY BUG.

After a memory location and its contenis are displayed, you can press
the SPACE bar to cause the next location and its contents to be
displayed, or the MINUS (-) key to display the previous location and
its contants.

Notice that if you type a value followed by a SPACE or MINUS, the
content of the memory location is not medified. Only when you press
ENTER directly after typing a value is the content changed.

Typing a PERIOD {) terminates the command and displays the
question-mark prompt. :

CPU RAM resides in the console, the Mini Memory module, ard the
Memory Expansion unit, if attached. It is directly addressable from a
TMS39900 assembly language program.

The following example inspects the contents of memory locations
>8300, > 8301, and >8302; changes the contents of >8302 to >F7;
changes the contents of >8303 to > 12; and redisplays the contents of
>8302 and =>8303. Finally, the content of 8304 is inspected but is-
not changed, sinca the value entered (>3C) was not followed oy
pressing ENTER. Typing a PERIOD terminates the command and returns
to the question-mark prompt,

Mini Memory

Display Eniries
? M8300 <ENTER>
M8300 =00 — > < ENTER >
M8301 =00 — > <SPACE>
MB302 =00 — > 7 < ENTER>
M8303 =00 —> 8A12 <ENTER>
M8304 =00 —> < MINUS >
M8303 =12 — > < MINUS >
M8302 =F7 —> <SPACE>
M8303 =12 — > < SPACE>
M8304 =00 —> 3C <SPACE>
M8305 =00 — > < PERIQD >
2

CAUTION

Do not medify the contents of CPU memory
addresses > 8370 through >83FF since
this area of memory is used by EASY BUG.

Modify VDP Memory — V
Format: Vxxxx

(where xxxx is a hexadecimal value)

This command displays the conterts of a selected VDP memory
address and gives you the option of changing the data at that
address. If a memory location is not specitied, >0000 is used.

Note: Since VDP RAM does not extend beyond > 3FFF, this is
normally the largest address you enter for the Modify VDP Memory
command. If you selact a larger address, a value is displayed, but this
“phantom” location cannot be alteed. Otherwlse, this command
works like the Modify CPU RAM (M) command.

VDP RAM conslsts of 16K bytes of memory at addresses > 0000
through >3FFF. It normally contains screen-related information used
by the Video Display Processor, such as screen image, sprite
definition, color tables, and character pattern tables. It is also used, in
general, as a storage space by applications programs. In particular,
higher memory is used by DSRs (Device Service Routines) to pags 1/0
Information, Application programs also use part of VDP RAM as a
buffer for DSRAs and as a PAB (Peripheral Access Block) to pass
Information on a file to the appropriate DSR. See Appendix E for more
detailed information on the organization of VOP RAM.

67

TEXAS INSTRUMENTS
HOME COMPUTER

When the Tl BASIC language s in use, the VDP RAM aiso holds the
BASIC prograrr, the program symbol table, the value stack, the string
spacs, etc. Do 1ot alter the VDP RAM without sufficient knowledge of
the BASIC Interpreter since the interpreter uses the VDP RAM in a
special order. A detailed configuration of VOP RAM while T! BASIC Is
in use is shown in Appendix F.

Since VDP RAM is not directly addressable by the CPU, TMS9900
assembly language code {including irstructions and workspace)
cannot be executed in VDP RAM,

Display GROM Memory — G
Format: Gxxxx {where xxx is a hexadecimal value)

This command s used to display the contents of selected GROM
memory locatlons. If a memory focation is not specified with the
command, >0000 is used.

Since GROM is read-only memory, It is not possibie to alter the
contents of these locations. Otherwiss, this command works like the
Modify CPU Memory (M} ccmmand.

The computer can address up to eight GROMs. Three GROMSs In the
console control part of the computer operating system and :he Ti
BASIC Interpreter, Up to five additional GROMs may be located in a
Command Module. The number of GROMs in a Command Moadule
depends upon the size of the program in the module.

GROM addresses range from > 0000 through > F7FF. Each GROM has
6K bytes of memory, starting from an address with an sven-numbeared
first digit. For example, GROM 0 starts at address > 0000 and
occupies address space thiough > 17FF; GROM < starts at address

> 2000 and occupies address space through > 37FF.

The following is a layout of the GROM memory space.

GROM O Locations > 0000 through > 17FF Contained
. GROM 1 Locations > 2000 through > 37FF i the
GROM 2 Locations > 4000 through > 57FF console
GRAOM 3 Locations >8000 through > 77FF
GROM 4 Locations >8000 through > 97FF Contained
GROM 5 Locations > AQ0O through > B7FF ina
GROM 8 Locations > C000 through > DIFF Command
GROM 7 Locations > EQOD through > F7FF Module

m

Mini Memory

Execute Assembly Program — E
Format: Exxxx (where xxx Is a hexadecimal number)

This command is used o run an assembly language program located
in CPU RAM.
Program control is passed to the location specified. This address

should be an entry point in an assembly language program. If a
mamory location is not specified with the command, > 0000 is used.

CRU Single-Bit /O — C
Format: Cxxx {where xxxx is a hexadecimal number)

Tris command is used to display and, optionally, change the CRU bit
at the specified location. If a locatlon Is not spectfied with the
ccmmand, >>0000 is used.

After you type the command and address and press ENTER, the
specified address is displayed, along with the state of the bit at that
location (either zero or one). The state of the bit Is Indicated by the
least significant digit of the two-digit value. The left digit is zero.

For example, a display of

c0201 =00 —>
indicates the bit at address >0201is a zero (the least significant digit
of the two-digit value is zero); whereas a display of

0202 =01 —>

indicates thai the bit at address >0202 is one.

Ta change tha state of a bit, enter a zero or a one.

Save CPU Memory to CS81 — S

Fcrmat: Sxxxx (where xxxx is a hexadecimal valua)

This command dumps the contents of CPU memory to cassette unit
number 1, starting at the specified memory location. This command Is
used to save the contenis of a program and/or data on a cassette tape
so that it ean be loaded again later.

If no address is specified, the contents of memory are dumped,
starting from > 0000.

TEXAS INSTRUMENTS
HOME COMPUTER

Atter you type the starting address and press ENTER, the prompt
TC?

is displayed. Enter the address of the last memory location you want
to dump to cassette tape.

After you enter this address and press the ENTER key, the contents of
the memory range are dumped to the cassette tape on cassatte unit
number {CS1).

Note: To save all of the contents of the Mini Memory module,
including references and pointers, entsr a starting address of > 7000
and an ending address of >7FFF.

Load Storage from CS1—L
Format: L

This command loads a program from a cassette lape in a cassette
recorder/player. The program is loaded into the same memoty space it
occupied when it was saved with the S command (see above).

When the question-mark prompt (?) is on the screen, press Lto load a
program from cassette. The computer prints instructions on the
screen to help you through the procedure. Follow the directions as
they appear on the screen. Be sure you have connected the recorder
and inserted the appropriate cassette ‘ape into the recorder.

See the User’s Reference Guide for additional information on oading
cassettes.

70

Mini Memory

APPENDIX A
CPU Memory Map
> 0000 0000
Console ROM
>1FFF 8191
= 2000 8192
Memory Expansion — 8K-byte segment
{Low Memory)
>3FFF 16383
> 4000 16384
Feripheral ROMs (mapped)
for device sarvice routines
>5FFF 24575
> 6000 24576
.Mini Memory — 4K-byte ROM segment
>BFFF 28671
>7000 28672
Mini Memory — 4K-byte RAN segment
{(Medium Memory)
>7FFF 32767
> 8000 —32768
Memory Mapped Devices for
VDP, GROM, Sound and Speech
CPU RAM at 8300 — >B83FF
>9FFF ~ 24577
>A000 — 24576
Memory Expansion — 24K-byte segment
(High Memory)
>FFFF -1

71

TEXAS INSTRUMENTS
HOME COMPUTER

Mini Memory

> B00C
= 6010
>8012
=>6014
>6016
>8018
=>601C
> 6020
>6024
>6028
>602C
> 6030
> 6034
>6038
>B603C
> 6040
> 6044
=>6048
>604C
> 6050
> 6054

>6F38

>8FFF

72

APPENDIX B
Mini Memory ROM Drganization

XML >70
XML >71
XML >72

BLWP @ GPLLNK
B8LWP @ XMLLNK
BLWP @ KSCAN
BLWP @ VSBW
BLWP @ VMBW
BLWP @VSBR
BLWP @ VMBR
BLWP @ VWTR
BLWP @DSRLNK
BLWP @ LOADER
BLWP @ NUMASG
BLWP @ NUMREF
BLWP @STRASG
BLWP @ STRREF
BLWP @ ERR

Standard ROM/GROM Header
NAMLNK — Name Link Rou:lne
TGOBLD — Tagged Object Loader
CIF — Convert Integer to Floating
Unused

Link to GROM Routine

Link to ROM Routine

Keyboard Scan

VDP Single Byte Write

VDP Multipie Byte Write

VDP Single Byte Read

VDP Multiple Byte Read

VDP Write to Register

Link to Device Service Routlne
Tagged Object Loader

Numeric Asstgnment Routine
Get Numeric Parameter

String Assignment Routine

Get Sting Parameter

Error Reporting Routine

Start of ROM program Area

Start of Pre-Defined REF/DEF Table

End of Pre-Defined REF/DEF Table

MINIMEM

{the 4K-byte
segment In the
Mini Memory
module}

EXPMEM2

{the 24K-byte
segment in the
Memory Expansion
unity

APPENDIX C
RAM Crganization—TI BASIC Files

28672
28674

28675
28676
28678
28680

32767

- 24578
— 24574

- 24573
— 24572
- 24570
— 24568

—1

>7000
=>7002

>7003
>7004
> 7008
> 7008

>7FFF

> A000
>A002

> A003
> A004
> AD06
> AQ08

>FFFF

ID Ward >5AAS

File Information—Status
Information

Logical Record Length
End-oi-File Pointer
Current File Entry Point
Start of File Space

End of File Space

ID Word =>5AA5

File Information—Status
Information

Logical Record Length
End-of-File Polnter
Current Flle Entry Point
Start of Flle Space

End o’ File Space

73

TEXAS INSTRUMENTS
HCME COMPUTER

Mini Memory

APPENDIX D

Mini Memory RAM Organization—Assembly Language Storage

28672
28674

28700
28702
28704
28708
28708
28710
28712
28714
28715
28713
28720
28724
28726
28723

28730
28810
28818
28824
28856
28888
28920
28952

32767

74

> 7000
=>7002
>7012
>701¢
>701E
> 7020
>7022
>7024
>7026
>7028
>7T02A
»>702C
>T02E
>7030
>7034
=>7036
> 7038

>T03A
>708A
>7092
=>7098
=>70B8
>70D8
>70F8
>7118

>7FFF

ID Word >AS55A
Identifiers for Arguments

First Free Address in Medium Memory (> 7000- > 7FFFi
Last Free Address in Medium Memory

Default Eniry Address (> 0000)

First Free Address in High Memory (> A000-> FFEQ)
Last Free Address in High Memory

First Free Address in Low Mernory {>2000- > 3FFF)
Last Free Address in Low Memory
Checksum Value

Pointer to Flag Byte in PAB

GPL Return Address ;J:gecgfel;y
CRU Address of Peripneral Object
Device Name Length Loader

Pointer to Device Name in PAB
Version Number of DSR

-éb-byte Record Buffer for Loader

NAME Buffer

I:J-TILWS Utility Workspace

E).SH Link Routine Workspace {Overlaps with UTILWS)
USRWSP User Program Workspace Registers

i:inking Loader Workspace Registers

i'r'nernal Data Storage

Free Space

Start of User Deflned REF/DEF Tables

APPENDIX E
VDP RAM Memory Map
> 0000 0000
Pattern Name Table
(> 0300 bytes)
>02FF 767
>0300 768
Sprite Attribute List
>037F 895
>0380 896
Pattern Color Table (>0380 — >3FFF)
and Free Space
>03FF 1023
>0400 1024
Spnte Descriptor Blocks
>07TF 1919
>0780 1920
Sprite Veloc.ty Table
>Q7FF 2047
>0800 2048
Pattern Generator Area
Default Characters >0900 — >0AFF
Also used for PAB Area
>0FFF 4085
=1000 4096
Free Memory Space
Used also for PABs and Buffers
>137F 4991
>1380 4992
Used as Buffer for Program File Load
>34FF 13567
>3500 13568
Blocks Reserved for Disk DSR
>3FFF 16383
L.~ "
75

TEXAS INSTRUMENTS

HOME COMPUTER

APPENDIX F

VDP RAM with BASIC Interpreter
= Q000 0
Screen
>02FF 767
= 0300 768
Color and Sgrite Table

>031F 799
> 0320 800

Crunch Buffer
>03BD 957
>03BE 958

BASIC Temporaries
and Interpreter Roll-Out Area

>03F~ 1023
> 0400 1024
Character Tables
> 05FF 1535
= 0600 1536
Value Stack

String Soace

Dynamic Symbol Table and PABs

Static Symbol Table

Line Number Table

Crunched Frogram
>37FF 16383

76

Ll

Mini Memory

INDEX

A

ARG 47

Assembler 56

B

Battery 5, 6, 81

C

CHARPAT subprogram 31

CRU Single-bit 1O command 64,
65, 69

D

Debugger 5, 64-70

Display GROM memory
command 64, 65, 68

DSRLNK 37, 50-51

E

EASY BUG debugger 5, 64-70

EFR 54-55

Erior messages 42, 55

Exscute assembly program
command 64, 65, 69

F

FAG 38, 47

Files (general) 5, 13-18
Access 14-18
EXPMEM2 13, 16, 18, 73
{ cading and saving 15-18
MINIMEM 13, 15, 16, 73
Organization 14
Speaclfications 14

G-H
GFL status byte 37, 38
GPLLNK 37, 3845

-J
INR subprogram 21

K
KSCAN 37

L

LINK subprogram 24-29

LOAD AND RUN option 11

Load storage command 64, 65,
70

ILOAD subprogram 22-24

Memory
CPU memory 6, 7, 20, 22, 26,
30, 32, 35, 36, 37, 41, 45,
50, 64-70, 71-76
Graphics Read Only Memory
{GROM) 5, 7, 34, 37-45, 64,
65, 68
Memeory expansion unit 5, 13,
14, 16, 18, 19-20, 21, 31-33,
66, 71, 73
Mini Memory meodule 5, 6-7,
13, 15, 20, 21, 23, 24, 28,
32-33, 66, 70, 71, 74
Random Access Memory
(RAM) 5, 6, 7, 20, 30-31,
32-33, 35-37, 3945, 4850,
6768, 71, 73-76
Read Cnly Memory (ROM} 5,
7, 37, 45-50, 5255, 71-72
VDP memory 5, 6, 26-28,
30-3t, 34-37, 3841, 45,
48-49, 53, 64, 65, 67-68, 71,
75-75
Mixing assembly language
programs and Tl BASIC
files 14, 19-20
Mcedify CPU memory command
64, €5, 66-67
Modify VDP memery command
64, €5, 67-68

77

TEXAS INSTRUMENTS
HOME COMPUTER

N- W-X-Y-Z
NUMASG 52, 72 XML routine codes 46, 72
NUMREF 54, 72 XMLLNK 37, 45-50
O-p
PAB (Peripheral Access Block)
40, 41, 50,75

PEEK subprogram 30
PEEKV subprogram 30
POKEV subprogram 31

Q-R
REF.DEF table 12, 24, 28-20

RE-INITIALIZE option 11, 12
RUN option 11,12

L3

Save CPU memory command 64,
65, 69-70

STACK 38, 43, 47, 48-49

STATUS 38, 43-45, 47, 48-49

STRASG 53

STRREF 54

T

Tl BASIC interface utilities 52-63
T1 BASIC subprograms 20-31

v

UTILWS 34
USRWSPF 34

v

Video display processor (VDP) 5,
6

VMER 36

VMBW 35

VSB3 36

VSBWV 35

VWTR 36

78

Mini Memory

SERVICE AND WARRANTY INFORMATION

These modules are durable devices, but they should be handled with
the same care you would give any other piece of electronic equipment.
Keep the module clean and dry, and don’t touch the recessed
contacts.

CAUTION:

The contents of a Command Moduie can be
damaged by static electricity discharges.

Static electricity bulld-ups are more llkely to ozcur when the natural
humidity of the air Is low (during winter or In areas with dry climates).
Tc avoid damaging the module, jus: touch any metai object (a
doorknob, a desklamp, etc.) before handling the module.

If static electricity is a problem where you live, you may want to buy a
speclal carpst treatment that reduces static build-up. These
commercial preparations are usually available from iocal hardware
and office supply stores.

in Case of Difflculty

If the module does not appear to be operating properly, return to the
master title screen by pressing QUIT. Turn the computer OFF,
withdraw the module, align it with the module opening, and reinsert it
carefully. Then turn the computer 01, and press any key to make the
master selection list appear.

If the module is accidentally removed from the slot while the module
contents are being used, the computer may behave erratically. To
restore the computer to normal operation, turn the computer console
ofl, and wait a few seconds. Then turn the computer on again.

If you have any difficulty with your computer or the Mini Memory
module, please contact the dealer from whom you purchased the unit
andfor module for service directions, or see the warranty at the back
of this book.

Additional information concerning use and service can be found in
your UUser's Reference Guide.

79

TEXAS INSTRUMENTS
HOME COMPUTER

Exchange Center Information

If your module requires service, instsad of returning it to your dealer
or to a service facility for r2pair or replacement, you may elect to
exchange it for a factory-reconditioned module of the same model {or
equivalent modet specified by TI) by bringing it in person to one of the
exchange centers which have been established across the United
States. A handling fee will be charged by the exchange center for in-
warranty exchanges. Qut-of-warranty exchanges will be charged at the
rates in effect at the time of the exchange.

To determine if there is an exchange center in your area, look for
Texas Instruments Exchange Center in the white pages of your
telephone direclory, or look under the Cailculator and Adding Machine
heading in the yellow pages. Please call the exchange center for
availability and axchange fze informalfion. Write our Consumer
Relations Department for further details and the location of the
nearest exchange center.

80

Mini Memory

Battery Information

The battery in the Mini Memory module should remain active for
approximately two years with proper care. For best resulls, store the
module only at normal room temperatures. AVOID PROLONGED
EXPOSURE OF THE MODULE TO TEMPERATURES ABOVE 100°F, as
high temperatures can shorten batiery and component life.

When the battery is no longer active, the module will continue to
perform propearly while inserted In the console with the power on;
however, the memory centents will not be retalned If the console is
turned off.

To check for proper ¢peration of the battery, follow these steps.
1. With the module in place in the ¢onsole, store a short Tl BASIC
program in the moduie memory by means of the SAVE MINIMEM

command, and turn the console off.
2. Wait several seconds, and turn the console on again. Then select Tl

BASIC and load the program from the module memory by using the
OLD MINIMEM command.

3. LIST the program to be sure thai the program has been loaded into
console mamaory.

When the battery is no longer funclioning, return the Mini Memory
module to a Texas Instruments Service Facllity or the Exchange
Center nearest you for replacement with a new or reconditioned
medule (at TI's option). A service fee wlll be charged for replacement if
tha module is no longer in warranty.

81

TEXAS INSTRUMENTS
HOME COMPUTER

THREE-MONTH LIMITED WARRANTY

HOME COMPUTER SOFTWARE MODULE

Texas Instrumenis Incorporated extends this consumer warranty only to
the or ginal consumer purchaser,

WARRANTY COVERAGE

This warranty covers the electronic and case components of the software
moduie and cassette. These components include all semiconductor chips
and devices, plastics, boards, wiring and all other hardware contained in
this module and cassette {*the Hardware™). This limited warranty does
not axtend to the programs contained in the software module and
cassette and in the accompanying book materials ('the Prog-ams").

The Hardware is warranted against malfunction due to defeclive
materials or construction. THIS WARRANTY 1S VOID IF THE HARDWARE HAS
BEEN DAMAGED BY ACCIDENT, UNREASONABLE USE, NEGLECT, IMPROPER
SERVICE OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS
OR WORKMANSHIP. '

WARRANTY DURATION
The Hardware Is warranted for a period of three months from the date of

the original purchase by the consumer.

WARRANTY DISCLAIMERS

ANY IMPLIED WARRANTIES ARISING QUT OF THIS SALE, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE
THREE-MONTH PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR
LOSS OF USE OF THE HARDWARE OR OTHER INCIDENTAL OR
CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE
CONSUMER OR ANY OTHER USER.

Some states do not allow the exclusion or limltation of implied
warrantles or consequential damages, 50 the above limitations or
exclusions may not apply to you in those states.

LEGAL REMEDIES
This warranty gives you spesific legal rights, and you may also have
other rights that vary from state to stale.

PERFORMANCE BY Tl UNDER WARRANTY

During the above three month warranty period, defective Hardware will
be reglaced when it is returned postage prepald to a Texas Instruments
Service Fagcility listed below. The replacement Hardware will be
warranted for thrae months from date of replacement. Other than the
postage requirement, no charge will be made for replacement.

s
82

Mini Memory

Tl strongly recommends that you insure the Hardware for value prior to
mailing.

TEXAS INSTRUMENTS CONSUMER SERVICE FACILITIES

Texas Instruments Service Facility Geophysical 3srvices Incorporated
P.O. Box 2500 41 Shelley Read
Lubbock, Texas 79408 Richmond Hil, Ontaric, Canada L4C5G4

Consumers in California and Oregen may contact the following Texas
Instruments offices for additionai assistance or information.

Texas Instruments Consumer Service Texas instruments Consumer Service

831 South Douglas Street B700 Southwest 105th

ElSegundo, Californla 90245 Kristin Squars, Suite 110

(2-3w73-1803 Beaverton, Owegon 97005
{503)843-5758

IMPORTANT NOTICE OF DISCLAINER REGARDING THE PROGRAMS

The following should be read and understood before purchasing and/or
using the software module and cassette.

Tl does not warrant that the Programs will be free from error or wil meet
the specific requirements of the consumer. The consumer assumaes
complete responsibility for any decision made or actions taken based on
information obtained using the Programs. Any statements made
concerning the utility of the Programs are not to be construed as express
or implied wearranties.

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING
THE PROGRAMS AND MAKES ALL PROGRAMS AVAILABLE SOLELY ON AN “AS
IS” BASIS. IN NO EYENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE
FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH'OR ARISING OUT OF THE PURCHASE OR USE OF THE
PAOGRAMS AND THE SOLE AND EXCLUSIVE LIABILITY OF TEXAS
INSTRUMENTS, REGARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED
THE PURCHASE PRICE OF THE SOFTWARE MEDIA. MOREOVER, TEXAS
INSTRUMENTS SHALL NOT BE LIABLE FOR ANY CLAIM OF ANY KIND
WHATSOEVER BY ANY OTHER PARTY AGAINST THE USER OF THE PROGRAMS.

Scme states do not allow the exclusion or limitation of implied
warranties or consequential damages, so the above limitations or
exclusions may not appiy to you in those states.

83

